非住宅・中大規模木造用の高倍率、高階高耐力壁及び接合金物の開発検討 その8・高耐力接合金物に関する実験的研究

正会員 ○飯田 秀年*1 中村 亮太*1 正会員 飯島 敏夫*3

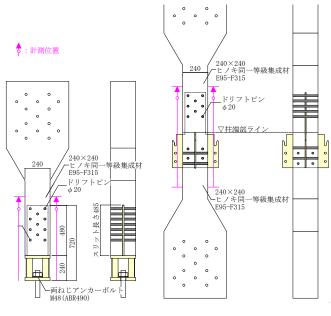
花井 勉*2 髙岡 繭子*4 大橋 好光*5

中大規模木造建築

柱脚金物 中間階金物

引張試験

1. はじめに


これまでのその 1~7 の検討で、非住宅・中大規模木造 において 4.5 層の構成となった場合、最下階及び中間階に 要求される短期許容引張耐力は最下階で 380~440kN、中 間階で 280~320kN 程度であると推定された 1)。

一般的な木造軸組工法で要求される性能より遥かに大 きく、これに対応できる金物はまだ一般的になっていな い。接合部の計画において引張力だけでなく、横架材へ のめり込みにも留意する必要があり、要求性能を満足す る接合金物の開発・標準化は必須事項である。

本報では引張、圧縮に有効な 1 階柱脚金物及び中間階 金物の実験について報告する。

2. 試験体

1 階柱脚金物及び中間階金物の試験体概要を図.1 に示す。 試験体の柱は 240 角の集成材とした。1 階柱脚金物は t=12mm の鋼板を 11 本の o 20 ドリフトピンにより柱に緊 結鋼する板挿入ドリフトピン接合とし、アンカーボルト には M48(ABR490B)を用いた。中間階金物は図.2 に示す ような、横架材との接合金物も兼ねた金物で、t=9mm の 鋼板と 8 本の ϕ 20 のドリフトピンによる鋼板挿入ドリフ トピン接合とした。試験体の仕様一覧を表.1に示す。

<1 階柱脚金物試験体> <中間階金物試験体>

図.1 試験体概要

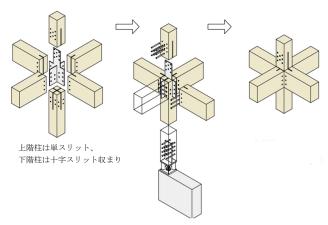


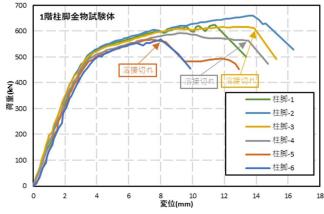
図.2 金物の収まりイメージ

表.1 試験体仕様

名称		1階柱脚金物 試験体	中間階金物 試験体		
用途		1階柱脚	中間階(柱頭柱脚)、 梁受け		
目標耐力		380~440kN	280~320kN		
金物仕様	アンカー ボルト	M48 (ABR490)	_		
	ドリフト	11- φ 20	上側柱:8-φ20		
	ピン	11- φ 20	下側柱:8-φ20		
柱		$240\!\times\!240\mathrm{mm}$			
		ヒノキ同一等級集成材、E95-F315			
試験体数		単調1体	単調1体		
		片側繰返し6体	片側繰返し6体		

3. 試験方法

接合金物の引張試験は、木造軸組工法住宅の許容応力 度設計(2017年版)に従い、1体の単調載荷試験より降伏変 位 δ y を求め、片側繰返しの δ 体は、 δ y の 1/2、1、2、4、 6、8、12、16 倍の順に一方向繰返し載荷とした。変位は、 1 階柱脚金物試験体は架台と木部の相対変位を、中間階金 物試験体は柱同士の相対変位を計測した(図.1)。


4. 実験結果

評価方法は変位 30mm までの包絡線による完全弾塑性 モデルとした。各試験体の包絡線を図.3 に、代表的な破 壊性状を表.2及び写真.1に示す。

1 階柱脚金物試験体は、500kN 付近から鋼板を溶接して いる底板が曲げ降伏しており、安定した荷重変形関係が 得られた。終局状態ではドリフトピン位置での木破や、 溶接切れが生じた。中間階金物試験体は 500kN 付近でド リフトピン位置での木破となった。

Development of shear walls and joints for medium and large size timber structure ~Part8. High-Strength Hardware~

NAKAMURA Ryota, IIDA Hidetoshi HANAI Tsutomu, TAKAOKA Mayuko, IIJIMA Toshio and OHASHI Yoshimitsu

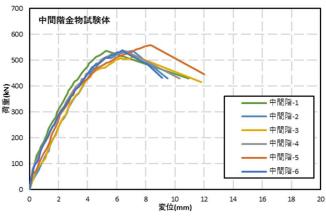


図.3 包絡線 表.2 破壊性状

No.	1階柱脚金物付き試験体	中間階金物付き試験体
0 (単調)	接合金物の溶接部切れ	ドリフトピン位置での木破
1 (片繰)	ドリフトピン位置での木破	ドリフトピン位置での木破
2 (片繰)	ドリフトピン位置での木破	ドリフトピン位置での木破
3 (片繰)	接合金物の溶接部切れ	ドリフトピン位置での木破
4 (片繰)	接合金物の溶接部切れ	ドリフトピン位置での木破
5 (片繰)	接合金物の溶接部切れ	ドリフトピン位置での木破
6 (片繰)	ドリフトピン位置での木破	ドリフトピン位置での木破

柱脚-1 木破

柱脚-3 溶接部切れ 写真.1 破壊性状写真

中間階-1 木破

構造特性値を表.3 に示す。柱脚金物試験体の短期基準 引張耐力 T_0 は 2/3Pmax で決定し 347kN、中間階金物試験

- *1 えびす建築研究所
- *2 えびす建築研究所、工博
- *3 日本住宅・木材技術センター
- *4 フリーランス
- *5 東京都市大学名誉教授·工博

体の T_0 は Py で決定し 234kN となり、要求性能に対しや や不足する結果となった。

表.3 構造特性値

18	皆柱脚金物	降伏時		2/3P _{max} 時		Pmax時	
No	加力方法	荷重Py (kN)	変位δy (mm)	2/3P _{max} (kN)	δ _{2/3Pmax} (mm)	P _{max} (kN)	δ _{Pmax} (mm)
0	単調	401	2. 4	397	2. 3	596	8.8
1	一方向 繰返し	439	2. 9	417	2.7	625	11.4
2		454	2.8	440	2.7	660	13.8
3		418	2.5	410	2.5	615	12.7
4		392	2.4	395	2.5	592	9. 2
5		383	2.5	378	2.5	567	7.4
6		398	2.8	379	2.6	568	8.0
	平均	414	2.7	403	2.6	605	10.4
	標準偏差	28. 1	0.21	24.0	0.10	36. 1	2.61
	変動係数	0.068		0.060			
ば	らつき係数	0.841		0.860			
	短期基準 長耐力To(kN)	348	_	347	_		_

中間階金物		降伏時		2/3P _{max} 時		Pmax時	
No	加力方法	荷重Py (kN)	変位δy (mm)	2/3P _{max} (kN)	$\delta_{2/3 Pmax}$ (mm)	P _{max} (kN)	δ _{Pmax} (mm)
0	単調	292	1.7	365	2.4	547	6. 5
1		284	1.8	357	2.5	536	5. 3
2	一方向 繰返し	331	2.8	358	3. 1	537	7. 1
3		321	2.7	346	2. 9	518	7. 2
4		296	2. 1	357	2.7	536	6. 4
5		363	2. 9	372	3. 0	558	8. 4
6		274	1. 9	360	2. 9	540	6. 4
	平均	312	2.4	358	2. 9	538	6.8
	標準偏差	33. 2	0.49	8.3	0. 22	12.7	1.04
	変動係数	0. 107		0.023			
ば	らつき係数	0.750		0.945			
	短期基準 長耐力T ₀ (kN)	234	_	339			_

5. まとめ

- ・短期基準引張耐力は要求性能に対しやや不足する結果となったが、従来の金物に比べ引張性能は大幅に向上することを確認した。
- ・柱脚金物試験では溶接切れが確認されたが、構造特性への影響は少なかった。
- ・木破を防止することも性能向上に有効と考えられる が、ドリフトピンの径や配置などは検討余地がまだ あり、今後も性能向上を目指し改良を行う予定であ る。

なお、本事業は、「林野庁の令和2年度 木材製品の消費拡大対策事業」のうち、「CLT 建築実証支援事業」のうち、「CLT等木質建築部材技術開発・普及事業」として一般社団法人 木を活かす建築推進協議会が実施したものである。 参考文献

1) 大橋好光 他:非住宅・中大規模木造用の高倍率、高階高耐力壁及び接合金物の開発検討(その 1 \sim 6)、日本建築学会大会学術講演梗概集 C-1、2020.9、pp327-334

- *1 Ebisu Building Laboratory Co.
- *2 President, Ebisu Building Laboratory Co., Dr.Eng.
- *3 Japan Housing & Wood Technology Center
- *4 Freelance, Mr. Eng.
- *5 Prof. Emeritus, Tokyo City Univ., Dr. Eng.