低層鉄骨造のDIY制震補強に関する技術開発 -その 16- 接着剤接合部強度の推定方法に関する解析的検討

正会員	〇花井	勉* ¹	曽田五月也*2
同	皆川隆	≩之* ³	大入慎也*4
	西川第	图太*5	望月大輔*6

低層鉄骨造	DIY	制震補強
接着接合	寸法効果	3 次元 FEM 解析

1 はじめに

一般に接着剤接合は寸法効果を有し、接着面積に比例 して接着剤接合部の抵抗力が増大しないことが知られて いる¹⁾。これまでの研究から、せん断接着強さは試験片の 重ね合わせ長さ(以下、ラップ長)を大きくし、板厚を薄く することで接着強さが低下し、引張接着強さは矩形接着 面の幅寸法の違いによる影響が大きく、幅寸法を大きく することで接着強さが低下することが明らかとなってい る²⁾。したがって、実際に本補強工法に用いる取付け金物 のように大きな接着面積の場合には、既往の実験により 得られた接着強さに比べて低下すると考えられる。そこ で本報告では、単純応力下での応力分布に関して 3 次元 FEM 解析により検討を行い、応力分布と実験結果の比較 により接着強さの推定方法を明らかにする。

2 寸法効果と接着面における応力分布の関係

図 1 には、せん断荷重が作用した場合に接着剤接合部 に生じる応力分布のイメージ図を示す。接着剤接合部の 抵抗力が接着面積に比例して増加しない寸法効果は、接 着剤層に生じる応力分布は一定ではなく、平均応力度に 対して端部の応力度が大きくなるため、端部の接着剤層 から許容応力度に達し、順次中央部に向かって破壊が進 行していくことが原因である¹⁾。

3 接着剤の弾性係数に関する実験的検討

3.1 実験システムと試験体の形状

接着剤接合部に生じる応力を検討するために、接着剤 の材料特性の1 つである弾性係数を明らかにすることを 目的として、接着剤の圧縮試験を行った。加力装置には、 250kN オートグラフを使用し、載荷はマニュアル制御に よる片側圧縮単調加力とし、試験体のひずみが 20000[με] となるまで行う。試験体は外径 10[mm]、高さ 25[mm]の円 柱に成形した接着剤とし、試験体数は2体とした。

Development of DIY Seismic Retrofit of Low-rise Steel Structures Part16 Resolution Consideration of the Steel Joint Strength with Glue Considered the Method Estimating Strength

正云貝	○化开 炮"	冒田五月也
同	皆川隆之*	3 大入慎也*4
	西川翔太*	5 望月大輔*6

3.2 計測システム

試験体のひずみは、向かい合うように貼った 2 枚のひ ずみゲージの平均より評価し、100kN ロードセルにより 計測した圧縮力を用いて、試験体の弾性係数を式 1 によ り算出し評価する。

$$E = \frac{P}{A \times \varepsilon} \cdot \cdot \cdot (式 1)$$

E:弾性係数[N/mm²] P:最大荷重[N]
A:試験体の断面積[mm²] ε :ひずみ[µ ε]

3.3 応力度 - ひずみの関係

E

図2には応力度-ひずみ関係を示す。図中の数値は、 平均弾性係数を示す。2体の試験体はともに同様の履歴を 描いているので施工不良はないと考えられる。したがっ て、3 次元 FEM 解析では、本実験結果である 4980[N/mm2]を接着剤 A の弾性係数と設定して検討を行う。

4 3次元 FEM 解析による応力分布に関する検討

4.1 解析概要

単純応力下での接着強さを明らかにするために行った 力学性能検証実験で使用した試験体²⁾、及び接着剤と同等 の物性を模擬し、ソリッド要素によりモデル化した 3次 元 FEM 解析により、接着剤接合部に生じる応力を検討し、 応力分布より単純応力下での接着強さの推定方法を明ら かにする。図3にはせん断、及び引張モデル図を示す。 モデルには、実際の試験と同様に上方へと荷重を作用さ せ、荷重値は接着面積に力学性能検証実験における平均 接着強さを乗じた値とした。図中の緑部を拘束し、拘束 条件は、試験片の下部は水平移動、及び回転移動をいず れの方向にも拘束し、加力側である上部の試験片は上下 方向の水平移動のみ自由とした。表 1 には、解析に用い

> HANAI Tsutomu, SODA Satsuya MINAGAWA Takayuki, OIRI Shinya NISHIKAWA Shota, MOCHIDUKI Daisuke

た試験片と接着剤の材料特性の一覧を示す。接着剤の弾 性係数は実験結果より算出し、ポアソン比は久保内らの エポキシ樹脂に関する実験的検討の中で、本接着剤と同 程度の弾性係数を示した試験体の値を用いた³⁾。また、応 力分布は、要素の表面と内部で分布状態が異なる。既往 の単純応力下での接着強さ試験より、せん断試験では接 着剤と被着材の界面での破壊が顕著であり、引張試験で は接着剤層内の破壊が顕著である。接合部は最大応力が 生じている箇所から順次破断すると考えられるため、せ ん断モデルでは界面、引張モデルでは断面の応力分布に より評価する。

表1	表1 材料特性一覧		
材料	SS400	接着剤A (エポキシ系	
弾性係数 [kN/mm ²]	2. 05 × 10 ²	4.98	
ポアソン比	0.30	0.33	
線膨張係数	1.20×10 ⁻⁵	7.00×10 ⁻⁵	

7.7×10⁻⁵

1. 40 \times 10⁻⁵

0.05

(左:せん断 右:引張) 図 3 モデル図

4.2 解析結果と実験結果の比較

3 次元 FEM 解析による接合部の最大応力度と実験結果 の比較を行う。本検討では、せん断試験におけるラップ 長、板厚、幅長さ寸法の違い、及び引張試験における幅 長さ寸法の違いが接着強さに与える影響について、解析 的に検討を行う。本検討では同一荷重が作用した場合に おける接着剤接合部に生じる応力度について検討してお り、破断時の接着剤層の応力を示しているわけではなく、 応力度が大きいほど接着強さは小さくなると言えるため、 解析により得られた最大応力度と荷重値として採用した 試験体の最大応力を比較することで、実験結果との整合 性について検討を行う。

[1/°C]

比重

[N/mm³]

接着剤層厚

表 2 には解析、及び実験結果の一覧を示し、図 4 には 応力分布図の一例を示す。なお、図中の赤い範囲が最大 応力度を示している領域であり、以降の検討では最大応 力度の値を用いて実験結果との比較を行う。解析結果よ り、いずれの解析結果においても端部に応力が集中する ことが確認でき、せん断試験ではラップ長が大きくなる につれて最大応力度が増大し、引張試験では幅寸法が大 きくなるにつれて最大応力度が増大するため、接着強さ が低下することが確認できた。また、板厚を増大するこ

とで最大応力度は低下し、接着強さは増大することが示 された。さらに、実験結果と解析結果の比率は概ね同程 度であり、精度よく模擬されていることから、3 次元 FEM 解析により接着強さを推定することができると考え られる。

表2 解析・実験結果一覧

板厚

実験結果 接着強さ

比率

ラップ長	12.5	25	50	75
実験結果 接着強さ	28 0	16.9	10.8	79
[N/mm ²]	20.0			
比率	2.59	1.56	1.00	0.73
解析結果 最大応力度 [N/mm ²]	14. 18	21. 14	32. 67	35. 61
比率	2.30	1.55	1.00	0.92
N				

a) せん断[ラップ長]

幅長さ寸法 50×50 50×75 75×50

35 61

32 67

解析結果

最大応力度

1.6

7.6

6

10.8

38.74

1 97 0 98

最大応力度

77.66

10

12.4

32 42

最小応力度 最小応力度/ (左:せん断 右:引張) 図4 応力分布図

5 まとめ

本稿では、3 次元 FEM 解析により単純応力下での応 力分布を明らかにする手法を示した。せん断試験では長 さ寸法、引張試験では幅寸法が応力分布に大きな影響を 与え、実験結果との整合性を検討した結果、その影響は 3 次元 FEM 解析により明らかにすることが可能であり、 任意の接着面寸法における接着強さを 3 次元 FEM 解析 により推定可能である。

【参考文献】

1)小野昌孝他:新版接着と接着剤,日本規格協会,pp.2,16-18,1989.3 2)大入慎也,曽田五月也,花井勉,皆川隆之,神谷佳祐,渡辺啓太:低層 鉄骨造の損傷抑制用 DIY 制振補強に関する技術開発(その 11)接着剤 の接着強さの寸法効果に関する検討,日本建築学会大会学術講演梗概 集 2016(構造Ⅲ),pp.907-908,2016.8

3人保内昌敏,津田健,本橋柾行,北條英光:じん性を変えた注型用エ ポキシ樹脂の耐熱衝撃性評価,社団法人日本材料学会(材料 No.41),pp.516-522,1992.4

*1 えびす建築研究所代表取締役 博士(工学) *²早稲田大学元教授 工学博士 *³えびす建築研究所 *⁴清水建設 *5早稲田大学創造理工学研究科建築学専攻 *6早野組

- *¹President, Ebisu Building Laboratory Co., Dr. Eng.
- *² former Prof., Waseda Univ., Dr. Eng.
- *³Ebisu Building Laboratory Co.
- *⁴Shimizu Co.
- *⁵Graduate Student, Waseda Univ.
- *⁶Hayano Co.
- -918-