ガススプリングを用いた家具転倒防止ダンパーの開発 その2 振動台実験

正会員 同

-50

-100

制振ダンパー つっぱり棒 家具転倒防止

ガススプリング 振動台実験

1.はじめに

本報では、第三者機関での性能評価内容と長周期長 時間地震動による床応答波などの地震動入力および各 種天井仕様などの振動台実験結果を報告する。

2.振動台実験概要

2.1 試験体概要

振動台実験は3軸振動台を使用し、幅900(mm)、奥 行 400(mm)、高さ 1800(mm)、質量 120(kg)の家具を用い て行った。本製品は垂直にした状態から 20(deg)傾けて、 家具天板部短辺の両端に 2 本設置している (図 1)。尚、 家具は背面壁より 20(mm)程離している。実験で用いた ガススプリングのパラメータは反発力が約 50~80(N)、 減衰力 400~1600(N(0.1m/s 時))である。

実験装置 図 1

2.2 第三者評価機関での性能評価

第三者機関の「家具転倒防止器具の性能評価」1)に基 づき、1995 年兵庫県南部地震で観測された JMAKobe 波 で加振した際の挙動を観測した。その評価は家具頂部 の加速度と変位、および目視の挙動によりランク分け される。評価結果を表 1 に示す。試験結果からガスス プリングの減衰性能 1600(N)では、最高ランク☆☆☆と なり、地震時の家具の挙動を安定的に抑制できること が分かった。

表 1 試験結果

概要	ランク☆☆☆判定		
家具の揺れ	0	/]\	
最大変位	0	27.2mm(図 2) <30(mm)	
実効加速度と最大変位 のプロット	0	評価圏内	
ロッキング	0	ほぼなし	
壁との衝突	0	小	
器具の損傷	0	なし	

-本製品 一入力加速度 (NS) 100 10 NS成分のみ(m/s²) 家具下部の変位(mm) 5 50

時間(sec)

○石原幸子*

花井勉**

変位小

25

-10

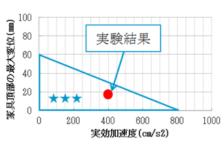


図2 第三者機関の評価

3.2 検証実験一覧

表 2 に安全性の検証に用いた各パラメータでの実験 結果を示す。

実験結果より、つっぱりタイプの他製品では金属製で あっても強度型なので T 字部に疲労が蓄積し、余震を 想定した連続加振に耐えられず家具が転倒してしまう のに比べ、本製品は家具の揺れに追従しながら揺れ幅 を抑制して元の位置に戻す力を与えるので、連続加振 にも長周期長時間地震動にも十分に安定した効果を発 揮しているのが分かる。

第三者評価用の剛な天井から木造住宅とオフィスの 一般的な天井の仕様で実験を行ったが、同様に性能を 発揮したため、さらに上下方向にたわむ天井②③での 実験でも行った。家具頂部の変位は増えるものの挙動 は安定しており、ボード張りのほとんどの天井仕様で 適用が可能である。尚、床はフローリングの他、畳仕 様でも効果を確認している。

さらに、家具の配置別であっても、ダンパーの設置 を改良することで、安定した効果を発揮することを確 認した。

4.まとめ

ガススプリングを利用した家具転倒防止用のダンパ ーを開発し、振動台実験により第三者機関評価の最高 ランクの性能を有すること、震度 7 相当の地震動、長

Development of furniture fixture devices for gas-spring damper Part2 shaking table experiment

ISHIHARA Yukiko, HANAI Tsutomu

周期長時間地震動にも効果を発揮すること、および各 種天井仕様、設置位置の対応も十分可能であることが 確認できた。

表 2 振動台実験概要

				42 4 1025	即台美騻慨岁	₹
概要	入力波	震度	天井 仕様	タ`ンパー 減衰力 (N(0.1m/s 時))	○非転倒 ×転倒	結果
長周期 長時間 地震動	MYG013 3 軸	6弱	岡川	400	0	家具頂部の最大変位が 30(mm)と、 ほとんど揺れなかった。
	RC5F 1 軸	7	岡川	600	0	家具頂部 58.5(mm)変位したが、 元の位置に戻った。
直下型地震動	Takatori 1 軸	6弱	剛门	400	0	家具頂部の最大変位が 20.8(mm) と、 家具はほとんど揺れなかった。
	JMAKobe NS1.3 倍	7	剛门	1600	0	挙動も安定しており、 最大変位も 27.2mm 以内に抑えることができた。
他製品 比較	JMAKobe 3 軸			400	0	4 回連続加振を行ったが、 最大変位も 40~70(mm)と挙動に大きな変化はない
		6強	岡川	他社A	×	【他製品 A (金属製)】 3 回連続加振を行った結果、1 回目では最大変位が 64.8(mm)大きく、器具 T 字部が損傷し、2 回目で 家具が転倒した。
				他社 B	×	【他製品B(プラスティック製)】 1回目の加振で器具が外れて家具が転倒した。
天井別			木造天井	400	0	木造天井標準(野縁、野縁受、吊木、筋違で構成) 家具頂部の最大変位は75.5(mm)と増えるものの、 安定した挙動で、天井の損傷はなし
	JMAKobe 3 軸	6強	木造天井	1600	0	木造天井弱(吊木、筋違なし) 結果は上記と同様 家具頂部の最大変位 48(mm)
	<i>3</i> +ни		木造天井		0	木造天井極弱 (吊木、筋違、野縁受なし) 結果は上記と同様
			オフィス 天井①	1600	0	オフィス天井標準(吊りボルトガタなし) 結果は上記と同様 家具頂部の最大変位 66.3(mm)
	JMAKobe 3軸 NS1.3倍	7	オフィス 天井②	1600	0	オフィス天井極弱(吊りボルトガタ有) 家具頂部の最大変位が 186.5(mm)と大きいが、 家具は転倒せず
家具の 配置別	JMAKobe 3 軸	6 強	岡山	1600	0	島置き (背面に壁のないタイプの 家具用) ダンパーを V 型に設置する ことで、安定した挙動とな った

MYG013:K-NET2011.03.11、RC5F 床応答波:簡易 2 種地盤増幅レベル 2 告示波入力時 RC5 階建て 5 階床応答、Takatori 波:JR 西日本 1995.01.17,Hicut50Hz,Lowcut0.5Hz

5.参考文献

1)一財) 建材試験センタ 転倒防止器具の性能証明 適合証明要領

^{*}カヤバシステムマシナリー株式会社

^{**}えびす建築研究所 代表取締役

^{*} Kayaba System Machinery Co., Ltd.

^{**}CEO., Ebisu Building Laboratory