花井勉*2

○佐藤高明*6

宫津裕次*4

低層鉄骨造の損傷抑制用DIY制震補強に関する技術開発

-その 6- 粘弾性ダンパを設置した偏心/非偏心鉄骨架構の振動台実験

低層鉄骨造	DIY	制震補強
振動台実験	粘弾性ダンパ	偏心

1. はじめに

本報告では、その3 で用いた接着剤のみにより粘弾性 ダンパを方杖状に設置した1層1スパン立体鉄骨架構の 振動台加振実験を実施し、建物使用期間中に予想される 以上の繰り返しの地震動入力に対する接着剤接合部の安 全性を検証する。なお、既存建築物の制震補強において は既存壁の配置や建物の利用上の制限によりダンパを理 想的な位置に配置することが困難な場合や建物が偏心し ている場合もあるため、偏心を有する試験体についても 同様の実験を行った。

2. 実験概要

2.1 試験体の仕様詳細

試験体は1層の鉄骨ラーメン架構とし、柱には 150×150×9の角型鋼管、梁には250×125×4.5×9のH型鋼を用 いた。試験体の高さは2870mm、幅は3050mmである。試 験体の上面には2層の重量を想定して、合計74.24kNの鋼 板を設置した。なお試験体は、剛心と重心が一致する無 偏心試験体と、鋼板の配置を調整することで重心のY座標 のみを移動した重量偏心試験体の2通りとした。重量偏心 試験体の偏心率は0.42である。図1、2には両試験体のパー スを示す。設置するダンパは粘弾性ダンパとし、ダンパ の取付け金物と柱梁の接合には接着剤接合を用いた。な お、養生時には接着剤層の厚さが適切かつ均一となるよ うに一定の面圧をかけて仮固定した。また、接着面の接 着強さがダンパの最大荷重発揮時に生じる応力の5倍とな るように接着面積を決定した。図3にダンパを設置する構 面の軸組図とダンパの取付け金物の仕様を示す。

Development of DIY Seismic Retrofit of Low-rise Steel Structures Part6 Shaking Table Test on Full Scale Steel Eccentric Frame with Viscous Elastic Damper

2.2 実験システム

試験体は、振動台上面に設置した鋼製冶具に試験体の

曽田五月也*¹

皆川隆之*3

丸野悟司*5

正会員

同

柱脚および土台梁をボルトによ り接合することで振動台上に固 定した。試験体を振動台に設置 した状況を図4に示す。なお、 加振方向に平行で、ダンパを設 置する構面を構面①、ダンパを 設置しない構面を構面②と定義 する。

2.3 粘弾性ダンパの仕様

図 5 に本実験で使用した粘弾性ダンパの外形を示す。 本体の鋼管は外形が 60.5mm、厚さが 5.5mm、本体の丸鋼 は M20 である。粘弾性体はジエン系の材料を用いており、 長さは 800mm、せん断厚さは 14.75mm である。また、ダ ンパは M20 の丸鋼と外形が 48.6mm、厚さが 5.1mm の座 屈防止鋼管を用いて、長さを延長している。ダンパ中立 位置でのピン孔の中心間長さは 1760mm である。ダンパ の抵抗力は、温度 10℃、振動数 2.0Hz、ひずみ振幅 250% (±37mm)の加振に対して、変位原点で約 28kN、最大変 形点で約 53kN である。

2.4 加振方法

入力波形は、バンド幅 0.05~20Hz で継続時間が約 180 秒の定常ホワイトノイズと、1995 年兵庫県南部地震での 神戸海洋気象台観測波南北成分を 10%、30%、50%に基準 化した地震動(以降 Kobe_ns*%基準化波と表記)とした。 加振の順序を表1に示す。

表1 加振スケジュール							
加振順	試験体	ダンパ	入力波形	加振順	試験体	ダンパ	入力波形
1		なし	定常ホワイトノイズ	9		なし	定常ホワイトノイズ
2			Kobe_ns10%	10			Kobe_ns10%
3			Kobe_ns30%	11			Kobe_ns30%
4	無偏心		Kobe_ns50%	12	重量偏心		Kobe_ns50%
5	試験体		定常ホワイトノイズ	13	試験体	あり	定常ホワイトノイズ
6		あい	Kobe_ns10%	14			Kobe_ns10%
7		009	Kobe_ns30%	15			Kobe_ns30%
8			Kobe_ns50%	16			Kobe_ns50%

SODA Satsuya, HANAI Tsutomu MINAGAWA Takayuki ,MIYAZU Yuji MARUNO Satoshi,SATO Takaaki

実験結果および考察

図6、7には、両試験体において定常ホワイトノイズの 入力より得た重心の併進加速度と重心から距離iの点の回 転による加速度の土台加速度に対する伝達関数を示す。 距離iは回転半径の長さで、無偏心試験体はi=1.27m、重量 偏心試験体はi=0.88mである。表2には、重心の併進加速度 からRD法より求めた1次の固有振動数と減衰定数を示す。 粘弾性ダンパを設置することによって、固有周期がわず かに上昇し、減衰定数が大きく増大していることを確認 できる。

図8、9には両試験のKobe_ns50%基準化波による加振で のダンパを設置しない場合とダンパを設置した場合を重 ねた架構の荷重変形関係とダンパの荷重変形関係を示す。 また図中の左上に示す数値は最大層間変形角であり、カ ッコ内にはダンパを設置しない場合に対するダンパを設 置した場合の最大層間変形角の比を示す。無偏心試験体 では、ダンパにより構面②の最大変形を増大させること なく、構面①の最大変形を80%程度まで低減していること が認められる。重量偏心試験体においては、ダンパによ り両構面とも最大変形が70%程度に低減されている。なお、 両試験体とも、ダンパは安定した履歴を描いており、最 大荷重は約44kNであった。

表3には、Kobe_ns50%基準化波の加振において、構面① と構面②の梁上で計測した最大応答加速度を示す。ダン パを設置することで、無偏心試験体の構面②においてわ ずかに増大しているものの、他の場合は低減されている。

表 3				
	構面	ダン	ダンパによる	
司马臾1平		なし	あり	応答低減[%]
每亿心计除休	加振構面①	772	692	89.6
無1冊/Uiti訊駅1平	加振構面②	781	819	104.9
<u> </u>	加振構面①	894	726	81.2
里里/m 心武駅14	加振構面の	827	519	62.8

表4にはKobe_ns50%基準化波による加振で取付け金物に 生じたせん断応力と引張応力の最大値と、滑り変位およ び浮き上がり変位を、図10には滑り変位と浮き上がり変 位の計測位置を示す。メーカー公称の接着強さに対し、 せん断応力は8%、引張応力は16%程度であり、滑り変位 および浮き上がり変位とも0.05mm以下と非常に小さく、 接着接合部の剛性が十分に高いことが認められる。また、 一連の加振終了後も接着接合部の損傷は見られなかった。

表 4 接合部に生 および滑りと	じた最大応。 浮き上がり	力度		ダ	ンパの抵抗力
入力波	Kobe_ns50%基準化波			<u>t):</u>	M++
試験体	無偏心試験体	重量偏心試験体		11	浮き上がり変位
最大せん断応力[N/mm ²]	1.4	1.4			
最大引張応力[N/mm2]	1.2	1.3			
最大滑り[mm]	0.021	0.021		滑り変	位
最大浮き上がり[mm]	0.042	0.034	図	10	計測位置
			21	10	山溪區區

4. まとめ

ー連の加振後も接着剤接合部には損傷はなく、ダンパ と柱梁材の接合方法として有用であることを明らかにし た。また、粘弾性ダンパを1構面にのみ設置した場合でも 1次減衰定数は増加し、最大層間変形および応答加速度を 低減できることを示した。

*1	早稲田大学創造理工学部建築学科教授 工博
*2	えびす建築研究所代表取締役 博士(工学)
*3	えびす建築研究所
*4	早稲田大学理工学研究所次席研究員 博士(工学)
*2	早稲田大学創造理工学研究科建築学専攻 (現 三菱地所設計)
*6	早稲田大学創造理工学研究科建築学専攻

*¹Prof., Dept. of Architecture, Waseda Univ., Dr. Eng.

- *²President, Ebisu Building Laboratory Co., Dr. Eng.
- *³Ebisu Building Laboratory Co
- *⁴Junior Researcher, RISE, Waseda Univ., Dr. Eng.
- *⁵Graduate Student, Waseda Univ.
- *⁶Graduate Student, Waseda Univ.