実測による立体骨組みの振動特性推定手法の検討(その3)精度向上に向けた各種検討

正会員	〇中村	聡 *1	同	松岡 知亮 *
同	高橋	勇人* ²	同	林 正司 *5
同	中村	亮太* ³		

立体振動モード	立体応答解析	スペクトル分解能
面内曲げモード	必要測定波長	常時微動測定

1. はじめに

その3 では、立体振動モード把握手法の精度向上に関 する各種検討を行う。実測による面内曲げ卓越モードの 推定、スペクトル分解能の適切範囲決定による隣接振動 モードの判別精度向上及び平均スペクトルを用いた測定 波形長さの妥当性の実証について検討を行った。

2. 提案手法に関する各種検討

2.1 面内曲げ卓越モードに関する検討

その1 で述べた実測による立体振動モード作成手法で は回転中心が定まらない卓越振動数が存在し、この原因の 検討を行った。実測と、立体数値モデルの立体応答解析 結果への本手法の適用結果と固有値解析結果との比較を 行った。提案手法では床スラブの回転中心が得られない 14 階建 SRC 造集合住宅の例を示す(図1から図3)。低次 の固有振動数では良好な結果が得られた(図7)が、4次モ ードでは回転中心を読み取る事は全く不可能であったが、 運動中心を示す垂線は同じ傾向を示していた。一方、立 体数値モデルによる固有値解析結果では床の曲げ運動が 現れていた(図4)。これより、このような図が得られた場 合は床の面内曲げの結果と推定出来る。

2.1.1フーリエ振幅分布による面内曲げ運動の検討

数値モデルの立体応答解析より得た 2 次のフーリエ振 幅分布図及び固有値解析より得た立体振動挙動を示す(図 6,図 7)。同一振動数でのフーリエ振幅の値は測定点毎の 振動の強さを表している。ここで、振幅値が最小の解析 点 5 付近に回転中心が確認でき、また回転中心から離れ る程、振動が強くなっている事が両図から確認された。 この結果から、床スラブが剛床として運動している立体 振動時において、本推定手法は立体振動モードを推定す る事が可能であると確認された。

実測及び応答解析から得たフーリエ振幅を、図 5 に示 す位置毎に表す(図 8, 図 9)。ここで、実測で得たフーリ エ振幅の値の推移が、解析で得た値の推移と類似してい る事が確認できた。この結果から、実測による測定結果 からも面内曲げ卓越モードが生じている事が推定された。 また、立体振動挙動を推測し易くする為に解析結果のフ ーリエ振幅の最も小さい値を 0 とし、その前後で振動方 向が逆転したと仮定したグラフを示す(図 10)。この結果か ら面内曲げ卓越モードのように床スラブが剛床として運 動をしていない立体振動時においても建物の立体振動特 性を推定する事が可能となった。

A study to experimental estimation of vibration characteristics of three-dimensional structure. Part3:Research for accuracy enhancement

NAKAMURA Satoshi TAKAHASHI Yuto and NAKAMURA Ryota

2.2 必要スペクトル分解能の検討

超高層純ラーメン RC 造建物において、隣接する振動モ ードのスペクトル分解能の低下に伴い判別精度が低下す る現象が確認された。よって、実測結果及び立体数値モ デルの立体応答解析結果から適切なスペクトル分解能範 囲を検討した。ここで、回転スペクトル上の隣接する2 つの卓越ピーク間のデータ数を分解間隔*ds*と定義する。 分解間隔*ds*は、その2 つの卓越ピーク振動数*f*1,*f*2とスペ クトル分解能*df*により字式で表される。

$ds = (f_1 - f_2)/df$	(1)
$df = 1/(N \times dt)$ [Hz]	(2)

これを回転スペクトル上で表すと図11のようになる。 波形時間刻み*dt* = 0.01 [s]で一定とし、解析スパンNをパ ラメータとした。各ケース別の固有振動数と振動モード の判別可否による検討結果(表1)を示す。

このとき ①*ds* = 1: 固有振動数判別、振動モード判別共 に判別不可 ②*ds* = 2: 固有振動数判別は可、振動モード判 別は可又は不可 ③*ds* \ge 5: 双方で判別可となった。したが って、分解間隔*ds* \ge 5を満たすスペクトル分解能*df*の設 定で本手法が有効となると判断した。

図 11 回転スペクトル上の分解間隔ds 表 1 各ケース別検討結果一覧

_						
	解析	分解能	近接ピーク	分解	振動数	モード
	スパン	[Hz]	振動数差	間隔	判別	判別
実	2048	0.04883	0.04883	1	NG	NG
測結里	4096	0.02441	0.02441	1	NG	NG
木	8192	0.01221	0.02442	2	ОК	OK
数値	16384	0.006104	0.01400	2	ОК	NG
モデル	16384	0.006104	0.03340	5	OK	OK
応答は	16384	0.006104	0.03080	5	OK	OK
結果	16384	0.006104	0.05350	8	ОК	OK

2.3 必要測定波形長さの検討

これまで本手法における必要測定波形長は 300 秒程度 としてきたが、その妥当性の検討はされてこなかった。

- *¹東京工業大学大学院 修士課程
- *2芝浦工業大学大学院 修士課程
- *³えびす建築研究所
- *⁴成田国際空港
- *5芝浦工業大学工学部建築学科准教授

そこで、平均スペクトルの時間別推移から、本手法にお ける必要測定波形長さの妥当性の実証及び決定を目的と して平均スペクトル安定時間の検討を行った。本研究で は各種実在建物による検討結果のうち、超高層純ラーメ ン RC 造建物の例を挙げる。1 次及び 2 次ピーク平均振幅 と両ピーク平均振幅比の時間別推移を示す(図 12)。

本例では平均スペクトルが 200 秒以降で安定推移へと 移行することが確認された。また、他建物の検討結果か らも同様の傾向が得られた事により、本手法における必 要測定波形長は 300 秒程度であると判断した。

2.3.1 測定波形長さによる回転スペクトル分解能の向上

本研究により測定波形長さを多くとる事によって、振動数分解能が向上する事が確認された。ここでは、S 造純 ラーメン建物の例を挙げる。測定波形長さの異なる回転 スペクトルを確認すると、300 秒の測定波形長さでは 60 秒の回転スペクトル図に比べ、1.8Hz、1.9Hz 及び 3.1Hz において卓越が確認出来るようになった(図 13)。

図 13 平均スペクトル長さによる回転スペクトル分解能の向上 3. まとめ

実測結果で不明瞭な結果を生じる床スラブの面内曲げ モードの確認と、振幅分布の検討を加えることによりこ のモードの推定が可能となった。また、安定した結果を 得るために必要な波形記録時間の長さを確認することが できた。以上の検討により、提案している実測による建 物の立体振動特性把握手法の制度を向上させ、その有効 性を示す結果を得た。

参考文献

【1】松岡知亮.山口洋平.林正司.実測値の位相情報を用いた建物の 立体振動モード推定手法の検討.学術講演会梗概集.2011.379P-380P. 【2】松岡知亮.山口洋平.林正司.常時微動測定を用いた 3 次元立体 振動モード推定手法の検討.学術講演会梗概集.2011.377P-378P.

- *1 Graduate Student, Tokyo Institute of Technology
- *2 Graduate Student, Shibaura Institute of Technology
- *³ Ebisu Building Laboratory Co.
- *⁴ Narita International Airport Co.
- *5 Assoc.Prof,Shibaura Institute of Technology