実測による立体骨組みの振動特性推定手法の検討(その2)多点時刻差測定の検証と免震建物の地震応答

正会員	○高橋	勇人 * ¹	同	松岡	知亮 * ⁴
同	中村	聡 * ²	同	林工	E司 * ⁵
同	中村	亮太 * ³	同	紺野	克昭 * ⁵

立体振動モード	立体応答解析	東北地方太平洋沖地震
免震構造	常時微動測定	

1. はじめに

本提案手法では、一定時間の測定波形に含まれる情報 を抽出するために平均スペクトルを用いている。平面運 動を表わす回転中心の位置を示すためには最小3点の同 時測定が必要であり、より安定した結果を得るためにで きる限り多点の同時測定を行ってきた。しかし、その結 果多くの機材の設置と確認に多くの時間が必要となった。 本稿では平均スペクトルで安定した情報が得られるとい う前提を置けば、図1のように、少数の機材で時間を変 えて測定した結果を重ね合わせても多点同時測定と同様 の精度が得られると考えその精度を検証した。また、不 整形平面をもつ免震建物の常時微動測定と地震観測結果 を解析結果と比較し本手法の有効性を検証した。

2. 多点同時測定と多点時刻差測定の比較

測定は表1に示す17棟で行った。そのうち大学教室棟 と旧耐震基準の高層住宅1棟では、多点同時測定と多点 時刻差測定の両方を行い、両手法の解析結果から1~3次 モード図を作成、比較する。旧耐震基準の高層住宅では 多点同時測定を7回ずつ行った。そのため、図6のモー ド図には7回分の結果を重ねて載せる。図2、3は大学 教室棟の両手法解析結果であるが、振動数、立体振動モ ードにおいて概ねの一致が確認された。立体数値モデル 応答解析結果との比較も行った結果、図4のように振動 数、モードにおいて微動測定と概ねの一致が確認された。 この建物はEXPJによって2棟が接続されているものであ るが図2のように両方の建物を含むモードが現れた。

建物名称	棟数	特徴			
大学教室棟	2	S造(CFT)純ラーメン、EXP.J付き			
中層免震建物	2	L形、免震構造			
旧耐震基準の 中高層集合住	12	SRC造、壁付ラーメン			
新耐震基準の 中層住宅	1	SRC造、三角形に近い形状			

表1 建物概要

図1 多点時刻差測定例

図 6 は旧耐震基準の高層集合住宅の両手法解析結果であ り、こちらも概ねの一致が確認された。また、他の旧耐 震基準、新耐震基準の中高層集合住宅では多点時刻差測 定のみを行った。その結果、1~3 次において概ねのモー ドが確認された。

3. 誤差の発生とその原因の推定

しかし、同一測定点において、異な る測定回により大きな誤差を生じる例 が出た。図5は図6多点同時測定1次 モードにおける右上の測定点拡大図で、 ここでは最大15°の誤差が生じた。あ る測点の平均スペクトルで現れた卓越 周波数について他の測点のスペクトル の同一周波数の運動方向を読み取るが、 顕著なピークを示さない場合は誤差が

A study to experimental estimation of vibration characteristics of three-dimensional structure Part2: Research on combination method of several measurement results and apply to seismic isolated buildings TAKAHASHI Yuto NAKAMURA Satoshi NAKAMURA Ryota 大きくなる場合がある。特に回転中心に近い測点では方 向を確定することは困難な場合が多く無理矢理読み取る と混乱を生ずる可能性が高い。また対称性の高い平面を もつ場合、複数の卓越周波数が近接し判別が困難になる 場合もある。この問題についてはその3で検討する。

4. 免震構造建物における実測と立体数値モデルの比較

免震中層不整形建物について数値モデルの固有値解析、 数値モデルの地震波と微動波の応答解析結果、常時微動 測定結果、および地震観測結果の比較検討を行った。地 震波には免震層の相対変形測定結果より免震層が明らか に機能していると確認された 3.11 地震波を使用した。図 7 は立体数値モデルの、固有値、地震応答解析、および常 時微動波形に対する応答解析結果の比較である。ここで は両結果とも 0.2Hz 付近で 1~3 次モードが見られ、振動 数、モードについて概ねの一致が確認された。図8は1 階の地震観測波形から求めた卓越周波数とその回転運動 からなる立体振動特性である。概ね図7の解析結果と一 致しているが、地震観測結果では回転中心が建物中心に ある3次モードは確認できなかった。図9の微動解析結 果では、他の解析結果では得られていた 0.2Hz 付近のピー クは確認できなかったが、強風時に実施した常時微動測 定結果では安定した応答が確認でき、微動ではこの周波 数域はセンサー感度の限界であった。

5. まとめ

多点同時測定と時間差測定の結果比較から少数機材に よる時間差測定でも本手法により良好な結果が得られ、 さらに結果の信頼性も向上することを確認できた。

今後本手法の検討として、建物に同じ平面上で地震計 を複数点設置する必要がある。

- *² 東京工業大学大学院 修士課程
- *³ えびす建築研究所
- *4 成田国際空港
- *5 芝浦工業大学工学部

参考文献

[1] 新藤智記,林正司:不整形平面形状を持つ免震建物の立体振動性 状の把握,学術講演梗概集,2012,771P-772P.

[2] 大野恵理,林正司:既存建築物における耐震補強効果の 3 次元立 体挙動による検討, 学術講演梗概集,2009,573P-574P.

- *1 Graduate student, Shibaura Institute of Technology
- *² Graduate student, Tokyo Institute of Technology
- *³ Ebisu Building Laboratory Co.
- *⁴ Narita International Airport Co.
- *⁵ Shibaura Institute of Technology