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Abstract. Common concrete buildings have concrete floor/roof slabs without lateral braces, as well as steel deck 
slabs with steel frame. In routine seismic design of the slab for in-plane shear, the distributed mass on the slab 
would be usually treated as the physically lumped structural mass on intersections of the slabs with bays. 
Therefore the obtained slab shear entirely depends on a difference of the bays’ displacements and the slab 
stiffness. Meanwhile as for the structural system including mass distributed on the slab, the seismic behavior has 
hardly been clarified. This study addresses the maximum local in-plane shear response of the slab with 
distributed mass of single-story linear-elastic systems and its formulation. Although this study focuses on such 
elemental structural system, the results and conclusions could be useful for fundamental consideration of multi-
story elasto-plastic ones. For the purposes, a variety of single-story systems are investigated using linear-elastic 
time history analysis under earthquake. Then two predictable formulae for linear-elastic system including bay 
and slab are newly proposed. Moreover the proposed predictable formulae are verified with the analytical results 
as well as previous ones for lumped mass system. The comparisons show the validity of the newly proposed 
formulae in this study.
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1 INTRODUCTION

1.1 Objectives

In common, floor/roof slabs usually might be designed for in-plane shear due to seismicity using a 
difference of facing bays’ displacements and the slab’s in-plane shear stiffness. That is to say, a shear 
deformation of the slab in design procedures might be expressed by supposed lateral brace members 
instead of the slab diaphragm. Hence no influence of mass distributed on the slab might be considered. 
Consequently, such usual design procedures suppose uniform in-plane shear in the slab in each 
direction. That is on the premise that mass distribution on the slab might cause no shear response in 
addition to the physically lumped mass system. Does not structural design of the slab for in-plane 
shear have to consider mass distribution on the slab? To date, no research for this issue has been found 
to be reported yet. Previous researches have included the following issues. Archer (1963) investigated 
a technique of formulation of a consistent mass matrix that accounts for the actual distribution of mass 
throughout the structure in a manner similar to the Rayleigh-Ritz formulation. The natural mode 
periods and shapes could closely approximate the solution to the exact problem. Goldberg and Herness
(1965) formulated the vibration problem of multistory buildings with lumped masses at each 
intersection between floor and frame, considering both floor and wall deformations. The natural mode 
periods and shapes could be obtained by use of generalized slope deflection equations. Unemori et al.
(1980) studied how the floor slabs stiffness affect the magnitude of the in-plane forces generated in the 
slabs for multistory building systems with lumped masses. Jain (1984) showed that for long narrow 
buildings with identical frames and identical floors, the modes that involve in-plane floor 
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deformations are not excited by earthquake ground motion. Additionally it is noted that the result 
presupposes the acceptability of the lumping of masses of the building at the floor-frame intersections. 
Nakamura et al. (2006, 2007) have discussed and reported the behaviour and the formulation of 
dynamic in-plane shear response to the lateral ground shaking for the lumped mass system. However 
the investigation of seismic shear behavior of the slab with distributed mass had hardly been 
conducted. Then objectives of this study are: 

1) to obtain fundamental characteristics concerning local shear response for the distributed mass 
system of single-story linear-elastic structure as a feasibility study

2) to propose a useful formula for predicting the maximum local shear response in elastic range.

A variety of eigenvalue and time history analyses of single-story structures has been carried out to 
achieve insight into basic trends in the elastic seismic behaviours of the distributed mass systems. This 
study may not be directly applicable to multi-story systems. Because it is not evident whether limited 
study focusing on single-story systems is appropriate for multi-story. Linear-elastic response is 
comprehensively examined and presented in representative form to provide the framework of the slab 
design for seismicity. Obtained behaviors and maximum local shear prediction may provide attention 
to elastic design for moderate to high seismic applications including serviceability limit state. 
Observations highlighting the dynamics of single-story systems with linear-elastic characteristics 
might contribute to establish the conceptual framework for envisioning the seismic response of multi-
story systems with elasto-plastic characteristics. Through the investigation, a lot of emphasis would be 
on how the behaviors of distributed mass systems differ from lumped mass systems regarding the slab 
shear response.

1.2 Scope

The scope of this study includes the following:

a. Computation of eigenvalues and eigenvectors of simple linear structural system with distributed 
mass

b. Computation of dynamic earthquake response of the structural systems with and without the 
distributed mass by time history analysis

c. Evaluation of results of the eigenvalue and time history analyses
d. Proposal of a formula for prediction of the maximum local shear response
e. Evaluation of the proposed formula with the analytical results as well as previously proposed 

ones

(a) Frame structure

(b) Analytical model
Figure 1. Frame structure and analytical model
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Table 1. Mass distributions

1m 0.50 0.67 0.80

M1 0.50 0.67 0.80

M2 0.50 0.33 0.20

1m′ 0.125 0.4225 0.65

2m′ ~ 8m′ 0.125 0.0825 0.05

2 STRUCTRES CONSIDERED AND ASSUMPTIONS

Consider a frame with 1×2 bays such as previous researches (Nakamura et al. 2006, 2007) , according 
to its symmetry, a simplified model used to analyze in this study consists of two bays with a span L
(see Figure 1). The structure has a linear-elastic bay restoring force and story drift relationship as well 
as the slab for in-plane shear deformation. A constant k1 means a stiffness ratio of bay 1, K1, to a sum 
of two bays’ stiffnesses K1 and K2. The ratio is the following

21 2KK =
3

21
1 ==∴

K

K
k where 21 KKK +=

This analytical model assumes the following:

a. A 8 degree-of-freedom system with 8 masses (see Figure 1. (b))
b. Uniform mass distribution on the slab which could be expressed by Table 1 and Figure 1, which 

is independent of mass on bay 1
c. Each mass with a same distance can move unidirectionally same as the seismicity.
d. Each bay is expressed as a mass supported by a shear spring which corresponds to its story drift. 
e. Similarly the slab is expressed as 6 masses connected with 7 shear springs which correspond to 

its in-plane shear deformation. The springs have linear-elastic characteristics.
f. No flexural deformation of the slab is considered. Therefore the span L does not have anything 

to do with analytical results. This model does not incorporate the span L.

Newton’s equation of motion for the system is

[ ]{ } [ ]{ } [ ]{ } [ ]{ } GxMxKxCxM &&&&& 1−=++ (1)

where Gx&& is ground acceleration, { }x&& is acceleration vector, { }x& is velocity vector, { }x is motion 

vector, [ ]M is mass matrix, [ ]C is damping matrix, [ ]K is stiffness matrix

{ } { }T

nn xxxxx &&&&&&&&&&
121 −⋅⋅⋅=

{ } { }T

nn xxxxx &&&&&
121 −⋅⋅⋅=

{ } { }T

nn xxxxx 121 −⋅⋅⋅=

n : number of mass
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iK : bay stiffness (i = 1, 2)

fK ′ : slab stiffness

The variable structural characteristics in the analytical investigations include the following.

kf : Slab shear stiffness ratio defined as a stiffness ratio of the slab to the supporting bays

==
K

K
k

f

f 0.1 ~ 1000 where ff KK ′=7

T0 : Natural period when the slab is a rigid diaphragm
=0T 0.33, 0.67, 1.00 (sec)

m1 : Ratio of mass considered to be supported by the bay 1 to a sum of masses of the system, to say 
1.0

==
M

M
m 1

1
0.50, 0.67, 0.80

where ∑
=
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The distributed masses 1m′ ~
8m′ are obtained as follows (See Table 1)

4

37 1
1

−
=′

m
m , 2m′ ~ 8m′

4

1 1m−
=

A lumped mass system might be used as well as the uniformly distributed mass on the slab with a 
same distance.

3 EIGENVALUE ANALYSIS
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Eigenvalues and eigenvectors are properties of the equations that simulate the dynamic behavior of a 
structure. Prior to time history analysis for ground motion of seismicity, those values are found to 
know how the behavior of undamped structures for free vibration is affected by the slab shear stiffness 
ratio kf defined above. Based on those values, a lot of emphasis should be on the effective modal mass 
ratio and the modal participation vector.

The effective modal mass ratio is defined as a ratio of the effective modal mass to the actual mass and 
used to judge how a vibration mode is significant. Modes with relatively high effective mass ratios can 
be readily excited by base excitation. A sum of all of the effective mass ratios must be 1.0. The 
variation of the effective modal mass ratio of 1st mode of vibration in case of the natural period with 
the rigid slab T0 = 0.67 (sec) is shown in Figure 2 as a function of the slab stiffness ratio kf. This figure 
indicates that the effective modal mass ratio for 1st mode with the slab stiffness ratio kf which is equal 
to or greater than 1.0 may be considered as 1.0. That means that the distributed mass system with the 
ratio kf in a range of 1.0 or greater could be transferred into a single-degree-of-freedom (SDOF) 
system in mode space. The modal participation vectors correspond to eigenvectors of several modes of 
vibration for a unit vector {1} shown in Eq. (1). Figure 3 shows the modal participation vector of 1st 
mode of vibration and the slab stiffness ratio kf relationships in case of T0 = 0.67 (sec) with the mass 
ratio of the bay 1, m1 = 0.50. It is apparent from observation that increasing the slab stiffness ratio kf in 
a range of 3.0 or greater may not cause variation of the participation vector of 1st mode. In other 
words, there is not a discrepancy between the different slab stiffness ratios kf correspond to the 
participation vector of 1st mode less than 5% at every single mass.

Although the analytical results in case of T0 = 0.67 (sec) are illustrated here, in case of other two 
different values of T0, to say 0.33 and 1.00 (sec), approximately same behaviors of 1st mode of 
vibration are found with regard to the effective modal mass ratio and the participation vector, 
respectively. Consequently the slab stiffness ratio kf of 1.0 is enough to find the general dynamic 
behaviors of the distributed mass systems by use of analytical results for 1st mode of vibration. 
However, in order to find the local deformation of the slab by using analyses for only 1st mode, the 
slab stiffness ratio kf equal to 3.0 or greater might be required.

Figure 2. Effective modal mass ratio and slab stiffness ratio kf relationships (T0 = 0.67)

Figure 3. Modal participation vector and slab stiffness ratio kf relationships (m1 = 0.50, T0 = 0.67)
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Figure 4. Story drift time histories at maximum slab shear for BCJ level-2 (kf = 1.0, T0 = 0.67, m1 = 0.5)

Figure 5. Story drift time histories at maximum slab shear for BCJ level-2 (kf = 3.0, T0 = 0.67, m1 = 0.5)

4 TIME HISTORY ANALYSIS

4.1 Seismic waves

Applied unidirectional seismic waves are the Imperial Valley earthquake (EL Centro NS 1979) scaled 
such that its PGV (Peak Ground Velocity) matched 50 cm/s and the Building Center of Japan (BCJ 
1994) level-2 [3], which is an artificial earthquake generated to be compatible with current Japanese 
seismic code with 50 cm/s of PGV. The integration is performed with a time step of 0.01 second 
during these respective seismic wave durations with two percent of critical damping to the initial 
stiffness of the bays.

4.2 Analytical results

Figures 4 and 5 indicate story drift time histories of the two bays for BCJ level-2 with two different 
values of kf, 1.0 and 3.0, respectively. These figures indicates that whenever the maximum local shear 
response is generated in linear-elastic structures with slab stiffness ratio kf equal to or greater than 1.0, 
the both bays’ story drift displacements are always their respective approximate peak values in the 
cycle. Both bays showed probably same time histories in a range of kf equal to 3.0 or greater (figure 
5). The finding coincides with the behavior of the participation vector of 1st mode as mentioned 
above. So the slab diaphragm can be considered to be rigid in its own plane. Although the analytical 
results in case of T0 = 0.67 are illustrated above, the entire results including three different values of 
T0, to say 0.33, 0.67 and 1.00, have found that the natural period hardly affects the earthquake 
response in the slab shear behaviors.

4.3 Differences of the slab shear response between lumped and distributed mass systems

Figure 6 displays mass displacement and local shear distributions in the slab for distributed mass when 
maximum local shear response occurred. In the figure, the displacement distributions are not linear. 
And local shear response variations along the axis normal to the direction of seismic motion can be 
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seen. The shear distributions are not uniform and are approximately proportional to distance from the 
bays. These observations provide that inertial force applied to the mass on the slab could result in 
these behaviors. Maximum local shear response could be observed at either shear spring adjacent to 
the bays due to the inertial force for all the analytical cases including two different seismic waves and 
three different natural periods on the assumption of the rigid slab. Figure 6(b) shows an analytical case 
that the mass ratio m1 (=0.67), the mass ratio of the bay 1 to a sum of all masses, equals the constant k1

(=0.67), a stiffness ratio of the bay 1 to a sum of two bays. In this case time histories of displacements 
of bays 1 and 2 are approximately same as well as their fundamental natural periods, whereas local 
shear responses were observed. Then the average shear response was approximately zero. Moreover 
the local shear response in the middle of the slab is zero. From these facts the inertial force of mass 
could be thought transferred to the nearer bay. Meanwhile as for the other mass ratios of m1 of 0.50 
and 0.80, the shear distribution can be thought as a sum of the uniform shear due to difference of bay 
displacements and the proportional one as seen in cases of m1 = 0.67. These findings could not be 
obtained by the lumped mass system. Although in the analyses a sum of the lumped masses equals that 
of the distributed masses, Nakamura et al. (2006, 2007) illustrated that the lumped mass matrix and 
consistent mass matrix (Archer 1963) for distributed mass in the lumped mass system resulted in 
probably same maximum slab shear response. Based on the fact, shear response comparisons between 
the lumped and distributed mass systems are conducted. Needless to say, the maximum dynamic local 
shear response intensity for the distributed mass system must be equal to or greater than the average 
value. Note that the major premise of the lumped mass system is uniform shear response in the slab. 
Figure 7 shows comparisons of the maximum local shear response between distributed and lumped 
mass systems for BCJ level-2. In this figure, Vf max and MSA designate maximum local shear response 
and a sum of story shear response of the bays, respectively. As for the distributed mass system, inertial 
force applied to the mass on the slab could result in additional in-plane shear force of the slab. It is 
apparent that the lumped mass system could underestimate the maximum local shear response in the 
slab of the distributed mass, where the maximum local shear means a ratio of the maximum shear to a 
sum of story shear. This suggests necessity of a new formula for predicting that. 

(a) m1 = 0.50 (b) m1 = 0.67 (c) m1 = 0.80
Figure 6. Distributions of mass displacement and local shear response for BCJ level-2

(a) m1 = 0.50 (b) m1 = 0.67 (c) m1 = 0.80
Figure 7. Local shear response comparisons between distributed and lumped mass systems for BCJ level-2

-15.0

-14.5

-14.0

-13.5

-14.1

-14.0

-13.9

-13.8

-13.7

-14.0

-13.8

-13.6

-13.4

-13.2

-800

-400

0

400

-400

-200

0

200

400

-200

0

200

400

-

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Displacement (mm)

Shear (kN)
m1 = 0.50, T0 = 0.67, kf = 3.0 m1 = 0.67, T0 = 0.67, kf = 3.0 m1 = 0.80, T0 = 0.67, kf = 3.0

Bay 1 Bay 2

A

f

MS

V max

kf

m1 = 0.67, T0 = 0.67 m1 = 0.80, T0 = 0.67m1 = 0.50, T0 = 0.67 ¯ Distributed

r Lumped



C. Iihoshi, T. Minagawa, T. Hanai, S. Kiriyama / VEESD 2013 8

5 PREDICTION OF SHEAR RESPONSE

5.1 Proposal of Predictable Formulae

Nakamura et al. (2006, 2007) reported predictable formulae of the shear response based on balance of 
static force for the lumped mass system without mass on the slab as follows. Eq. (2) assumes a slab 
with a certain stiffness not rigid, meanwhile Eq. (3) does a rigid one. In case of the rigid slab, every 
single mass displacement must be always equal as well as the absolute acceleration. Thus each inertial 
force of the mass is proportional to the mass. Moreover a story shear ratio of the bays is same as their 
elastic stiffness ratio. Eq. (3) means that a maximum of the sum of the story shear of the bays could 
attribute to the maximum shear response of the slab. When slab shear stiffness ratio kf is sufficient in 
Eq. (2), this formula could be approximately equal to Eq. (3). If the slab stiffness ratio kf is infinite, 
these formulae are identical.

21max xxKV ff −=
( ) A

f

f
MS

kkk

kmk

+−

−
=

11

11

1
(2)

( )
max2111max VVkmV f +−= (3)

where x1 and x2 designate story drifts of bays 1 and 2 (see Figure 1(b)), V1 and V2 designate each 
bay’s story shear response respectively. Then in the design procedure, ( )

max21 VV + is given as MSA (SA: 

design spectral response acceleration).

When the mass ratio m1 and the stiffness ratio k1 of bay 1 are equal, both above formulae must yield 
zero slab shear response. On the other hand, these formulae could not take into account additional 
shear response due to inertial force of the distributed mass on the slab. Assume that inertial force of 
the mass might be transferred to the nearer bay based on the facts found in the previous section 4.3, 
the following Eq. (4) is proposed here. Considering practicality and convenience of the seismic design 
procedure, Eq. (5) is also proposed to predict the maximum local shear response, based on Eq. (3).
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where n : number of mass, SA: response acceleration

5.2 Verification of Predictable Formulae for Slab Subjected to Shear Caused by Seismicity

Figures 8 and 9 indicate maximum local shear response comparisons between analytical and predicted 
values with T0 of 0.33 and 0.67 for the distributed mass system. In these figures ¡ and × symbols 
designate analytical results for EL Centro and BCJ respectively. When the slab stiffness ratio kf is 
equal to or greater than 3, increasing the value of kf could not influence the analytical slab shear 
response for the distributed mass system. The previously proposed Eqs. (2) and (3) could 
underestimate the maximum local shear response. Especially it is noted that in any cases of m1 = 0.67 
both previous formulae generate no shear response in-plane of the slab.

By taking account for inertial force applied to the mass on the slab, in addition to difference of the story 
drift between two bays supporting the slab, the maximum local shear response in the slab which stiffness
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(a) m1 = 0.50 (b) m1 = 0.67 (c) m1 = 0.80
Figure 8. Maximum local shear response comparisons between analytical and predicted values (T0 = 0.33)

(a) m1 = 0.50 (b) m1 = 0.67 (c) m1 = 0.80
Figure 9. Maximum local shear response comparisons between analytical and predicted values (T0 = 0.67)

ratio kf in a range of 1.0 or greater could be predicted appropriately by Eq. (4). When the slab stiffness 
ratio kf is equal to or greater than 3.0, Eq. (5) is also available for the prediction as well as Eq. (4). In 
routine design procedures, Eq. (5) which assumes a slab to be rigid is preferable to Eq. (4) for its 
simplicity. That is to say, it is not required to know a difference of the displacement between the bays 
for calculation in Eq. (5).

6 CONCLUSIONS

In this study a variety of eigenvalue and time history analyses were conducted in order to investigate 
the dynamic local shear response behavior of the slab for the distributed mass system, which is single 
story with linear-elastic restoring force characteristics as well as the slab. The results and conclusions 
of the analytical studies presented in this paper may be summarized as follows:

a) Eigenvalue analysis showed that the distributed mass system with the slab stiffness ratio kf in a 
range of 1.0 or greater could be transferred into a SDOF system in mode space.

b) The slab stiffness ratio kf of 3.0 is enough to find the local deformation of the slab for the 
distributed mass system by only 1st mode of vibration.

c) Time History analysis showed that local shear response of the distributed mass system could 
differ from that of the lumped mass system.

d) The distributed mass system showed dynamic shear response variations along the axis normal to 
the direction of seismic motion, according to the mass inertial forces on the slab.

e) The maximum local shear response could be observed at either shear spring adjacent to the bays 
for all the analytical cases.

f) Inertial force of mass on the slab might be transferred to the nearer bay since in cases of 
approximately same displacements of supporting bays, the local shear responses in the middle 
of the slab were zero.
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g) The lumped mass system might underestimate the maximum local shear response for the 
distributed mass system.

h) The previously proposed Eqs. (2) and (3) could underestimate the maximum local shear 
response of the distributed mass system as well.

i) The maximum local shear response in the slab which stiffness ratio kf in a range of 1.0 or greater 
could be predicted appropriately by newly proposed Eq. (4). When the slab stiffness ratio kf is 
equal to or greater than 3.0, Eq. (5) suitable for seismic design calculations is also available for 
the prediction.

Eigenvalue and time history analyses provided fundamental information described above upon the 
local shear response for the distributed mass system. The time history analyses suggest that mass 
distribution on the slab should be taken into account in the day to day seismic design of slab for in-
plain shear. Two predictable formulae for maximum local shear response were proposed based on the 
analytical results. Comparisons between the formulae and the results provided verification and 
indicated their utility. This study focused on single-story linear-elastic systems. To provide 
comprehensive coverage on the seismic design requirements for slab shear response, multi-story and 
elasto-plastic systems must be investigated furthermore.
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