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ABSTRACT: Common steel structures have concrete floor slabs including cast on stay-in-place 
steel form deck. In routine seismic design of  the slab for in-plane shear, the distributed mass on 
the slab would be usually treated as the physically lumped structural mass on the bays instead of 
the slab. Therefore the slab shear response entirely depends on a difference of  the opposite bays’ 
displacements and the slab stiffness. Meanwhile as for the structural system including mass distributed 
on the slab, the seismic behavior has hardly been clarified. This study addresses the maximum local 
in-plane shear response considering mass distribution on the slab of  the system with one-story and 
its formulation for fundamental seismic design. For the purposes, a variety of  linear-elastic structural 
systems are investigated using time history analysis under earthquake shaking. Then the predictable 
formulae in case of  linear-elastic structural system including bay and slab are newly proposed. 
Moreover the predictable formulae including previously proposed ones for lumped mass system are 
verified with the time history analytical results. The comparisons show the validity of  the proposed 
formulae.

1.2 Scope

The scope of this study includes the following:

a. Computation of linear earthquake response of 
simple structural system including the effect of 
the mass distribution.

b. Evaluation of results of linear time history.
c. Proposal of a formula for predicting of the 

maximum local shear response.
d. Evaluation of the proposed formula with the 

analytical results as well as previously proposed 
ones for lumped mass system.

2 STRUCTURAL SYSTEMS (ANALYTICAL 
MODELS)

Consider a frame with 1 × 2 spans such as pre-
vious researches (Nakamura et al., 2006, 2007), 
according to its symmetry, a simplified model 
used to analyze in this study consists of  two 
bays with a span (see Fig. 1). The structure has 
a linear-elastic bay restoring force and story drift 
relationship as well as the slab. A constant k1 
means a ratio of  stiffness of  bay 1 K1 to a sum 

1 INTRODUCTION

1.1 Objectives

In common, a slab for in-plane shear due to 
seismicity might be designed against a differ-
ence of adjoining bays’ displacements and the 
slab stiffness for in-plane shear. That is to say, a 
shear deformation of the slab in calculation must 
be resisted by laterally installed brace members 
instead. No influence of mass distributed on the 
slab might be considered. Such calculations sup-
pose that mass distribution on the slab might not 
cause the additional shear response. The behavior 
and the formulation of dynamic shear response 
in-plane problems to the lateral ground shaking 
for the lumped mass system were previously dis-
cussed and reported (Nakamura et al., 2006, 2007). 
However the investigation of seismic behavior for 
distributed mass system had hardly been con-
ducted. Therefore objectives of this study are: 1) to 
obtain fundamental information about local shear 
response for the distributed mass system of linear-
elastic structure, 2) to propose a useful fundamen-
tal formula for predicting the maximum local shear 
response in serviceability limit state design.
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of  two bays’ stiffnesses K1 and K2. The ratio is 
the following:

K k
K
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K K K1 2KK 1k 1KK
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This analytical model assumes the following:

a. Uniform mass distribution on the slab which 
could be expressed by Table 1 and Fig. 1, and is 
independent of mass on bay 1.

b. Each mass can move unidirectionally same as 
the seismicity.

c. The each bay is expressed as mass supported by 
a shear spring which corresponds to its story 
drift.

d. Similarly the slab is expressed as 6 mass con-
nected with 7 shear springs which correspond to 
its in-plane shear deformation. The springs have 
linear elastic behavior.

The variable structural characteristics in the 
analytical investigations include the following.

kf : Slab shear stiffness ratio defined as a ratio of 
the entire slab stiffness Kf (see Fig. 1(b)) to a sum 
of stiffness of supporting bays K
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T0: Natural period when the slab is rigid
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m1: Mass ratio of the bay 1 to a sum of mass of the 
system, to say 1.0
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∑ ∑m Mi′mm ,mi∑M : distributed mass

The distributed mass m m′ ′1 8m  can be seen in 
Table 1. For comparison, a lumped mass system 
might be used as well as the uniformly distributed 
mass on the slab with a same distance.

3 TIME HISTORY ANALYSIS

3.1 Seismic waves

Applied unidirectional seismic waves are the Impe-
rial Valley earthquake (EL Centro NS 1979) scaled 
such that its PGV (Peak Ground Velocity) matched 
50 kine and the BCJ (Building Center of Japan) 
level-2 (BCJ 1994), which is an artificial earthquake 
generated to be compatible with current Japanese 
seismic code with 50 kine of PGV (see Fig. 2). The 
integration is performed with a time step of 0.01 
seconds during these respective seismic wave dura-
tions with two percent of critical damping to the 
initial stiffness of the bays.

3.2 Analytical results

Figs. 3 and 4 indicate earthquake responses of 
the two bays for EL Centro NS with kf of  1.0 and 
3.0 respectively. These figures include time histo-
ries of story drift and restoring force. Whenever 
the maximum local shear response is generated in 
linear-elastic structures with slab stiffness ratio kf 
equal to or greater than 1.0, the both bays’ story 
drift displacements are always their respective 
approximate peak values in the cycle. Further-
more, in a range of kf equal to or greater than 3.0, 
both bays showed probably same time histories. So 
the slab can be considered to be rigid. Although 
the analytical results in case of T0 = 0.67 with EL 
Centro are illustrated above, the entire results 
including three different values of T0, to say 0.33, 
0.67 and 1.00 with two different seismic waves, 

LL

Seismicity

K12K2 K2K1 K1

(a) Frame structure 

(b) Analytical model 
Kf = 7Kf'

K1 K2

x1 x2

Kf'

2m′1m′ 3m′ 4m′ 5m′ 6m′ 7m′ 8m′

Figure 1. Frame structure and analytical model.

Table 1. Mass distributions.

m1 0.50 0.67 0.80

M1 0.50 0.67 0.80

2M2 1.00 0.66 0.40

m′1 0.125 0.4225 0.65

m′1 ∼ m′2 0.125 0.0825 0.05
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have found that the natural period and the wave 
hardly affect the earthquake response in the slab 
shear behaviors.

3.3 Differences of the slab shear response between 
lumped and distributed mass systems

Figs. 5(a) and 5(b) display mass displacements 
and local shear distributions in the slab when 

(a) EL Centro – NS 1979

(b) BCJ level-2 
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Figure 2. Earthquake excitations.
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Figure 3. Earthquake response of the two bays for EL 
Centro (T0 = 0.67, m1 = 0.5, kf = 1.0).
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Figure 4. Earthquake response of the two bays for EL 
Centro (T0 = 0.67, m1 = 0.5, kf = 3.0).

maximum shear response occurred. In these 
figures, the displacement distributions are not 
linear. And dynamic shear response variations 
along the axis normal to the direction of  seismic 
motion can be seen. The shear distributions are 
not uniform and are approximately proportional 
to the distance from the bays. That means inertial 
force applied to the mass on the slab resulted in 
these behaviors. Although these figures showed 
only two cases, maximum local shear response 
could be observed at either shear spring adjacent 
to the bays due to the inertial force for all the ana-
lytical cases including two different seismic waves 
and three different natural periods with the rigid 
slab. Fig. 5(b) shows a case that m1 ( = 0.67), the 
mass ratio of  the bay 1 to a sum of  mass, equals 
the constant k1, a stiffness ratio of  the bay 1 to 
a sum of  two bays. In this case displacements of 
bays 1 and 2 are same, whereas local shear dis-
tribution was observed. Then the average shear 
response was approximately zero. Moreover the 
local shear response in the middle of  the slab is 
zero. From these facts the inertial force of  mass 
on the slab could be thought transferred to the 
nearer bay. These findings could not be obtained 
by the lumped mass system. Needless to say, the 
maximum dynamic local shear response intensity 
for the distributed mass system must be equal to 
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or greater than the average value in the slab. Note 
that the major premise of  the lumped mass system 
is uniform shear response in the slab.

Although in the analyses a sum of the lumped 
mass equals that of the distributed mass, Nakamura 
et al. (2006) illustrated that the lumped mass matrix 
and consistent mass matrix (Archer 1963) for dis-
tributed mass in the lumped mass system resulted 
in probably same maximum slab shear response. 
Based on the fact, shear response comparisons 
between the lumped and distributed mass systems 
are conducted. Fig. 6 shows comparisons of the 
maximum local shear response between distrib-
uted and lumped mass systems with m1 = 0.50 and 
T0 = 0.67 for EL Centro. In this figure, VfV max

 and 
MSA designate maximum local shear response and 
a sum of story shear response of the bays, respec-
tively. As for the distributed mass system, inertial 
force applied to the mass on the slab transferred to 
the bays could result in additional in-plane shear 
force in the slab. When the slab stiffness ratio kf 
is equal to or greater than 3, increasing the value 
of kf could not influence the slab shear response 
for the distributed mass system as shown in Fig. 6. 
It is apparent that the lumped mass system could 

underestimate the maximum local shear response 
in the slab of the distributed mass. This suggests 
necessity of a new way to predict that.

4 PREDICTION OF SHEAR RESPONSE

4.1 Proposal of predictable formulae

Nakamura et al. (2006, 2007) reported predictable 
formulae of the shear response based on balance 
of static force for the lumped mass system without 
mass on the slab as follows.

Eq. (1) assumes a slab with a certain stiffness 
not rigid, meanwhile Eq. (2) dose a rigid one. In 
case of the rigid slab, every single mass displace-
ment must be always equal as well as the absolute 
acceleration. Thus each inertial force of the mass 
is proportional to the mass quantity. Moreover a 
story shear ratio of the bays is same as their elas-
tic stiffness ratio. From Eq. (2), maximum sum of 
the story shear of the bays could attribute to the 
maximum shear response of the slab. When slab 
shear stiffness ratio kf is sufficient in Eq. (1), this 
formula could be approximately equal to Eq. (2). If  
the slab stiffness ratio kf is infinite, these formulae 
are identical.

V K x x
k m k

k k
MSf fV K

fk

fk
ASK xfK =

−

( )k +1 2x
1 1kk

1kk ( kk
 

(1)

V m kfV max max
−m ( )V V+1 1kk VV VV+

 
(2)

where Kf designates entire slab shear stiffness, x1 
and x2 designate story drifts of bays 1 and 2, V1 
and V2 designate each bay’s story shear response, 
respectively. Then in the design procedure, 

( )V V1 2V VV V
max

 is given as MSA (SA: design spectral 
response acceleration).
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Figure 5. Distributions of mass displacement and local shear response for EL Centro (T0 = 0.67, kf = 3.0).
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Figure 6. Local shear response comparisons between 
distributed and lumped mass systems for EL Centro.
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When the mass ratio m1 and the stiffness ratio k1 
of bay 1 are equal, both above formulae must yield 
zero slab shear response. On the other hand, these 
formulae could not take into account additional 
shear response due to inertial force of the distrib-
uted mass. Assume that inertial force of the mass 
might be transferred to nearer bay, the following 
Eq. (3) is proposed here. Considering practicality 
and convenience of the seismic design procedure, 
Eq. (4) is also available to predict the maximum 
local shear response, based on Eq. (2).
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where n and ′mi
 designate number of mass and dis-

tributed mass respectively.

4.2 Verification of predictable formulae for slab 
subjected to shear caused by seismicity

Figs. 7(a), 7(b) and 7(c) indicate maximum local 
shear response comparisons between analyti-
cal and predicted values with T0 of  0.67 for the 
distributed mass system. In these figures  
and × symbols designate analytical results for EL 
Centro and BCJ respectively. When the slab stiff-
ness ratio kf is equal to or greater than 3, increasing 
the value of kf could not influence the analytical 
slab shear response as well as Fig. 6. The previous 
Eqs. (1) and (2) could underestimate the maxi-
mum local shear response as shown in the figure. 
Especially it is noted that in any cases of m1 = 0.67 

both previous formulae generate no shear response 
in-plane of the slab.

By taking account for inertial force applied to 
the mass not only on the bays but also on the slab, 
in addition to difference of  the story drift between 
two bays of  both sides of  the slab, the maximum 
local shear response in the slab could be predicted 
appropriately by Eq. (3). When the slab stiffness 
ratio kf to the adjoining bays is equal to or greater 
than 3, Eq. (4) is also available for the prediction 
as well as Eq. (3). In routine design, Eq. (4) is 
preferable to Eq. (3) for its simplicity. That is to 
say, it is not required to know a difference of  the 
displacement between the bays for calculation in 
Eq. (4).

In design procedure, it is also required to evalu-
ate shear capacity of slab to calculate the DCR 
(Demand Capacity Ratio). To evaluate the shear 
capacity of the slab, some kinds of loading test 
have been generally conducted. However in these 
previous static or dynamic loading tests, variation 
of the shear response in the slab might to be hardly 
supposed. Different shear distributions might yield 
different shear mechanisms. Thus the differences 
of the shear mechanism between actual dynamic 
response and these loading tests could be possi-
bly thought. But it is hardly justified to evaluate 
accurately the differences of the shear mechanism. 
Therefore based on the mass distribution, statically 
loading test or shaking table test might be desired. 
Moreover it is important for statically loading tests 
to evaluate accurately dynamic mechanical charac-
teristics of used slab material.

5 CONCLUSIONS

In this study a variety of  time history analy-
ses were conducted in order to investigate the 
dynamic shear response behavior of  the slab with 
distributed mass, which is supported by bays 
with elastic-linear restoring force characteristics. 
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Figure 7. Maximum local shear response comparisons between analytical and predicted values (T0 = 0.67).



590

The results and conclusions of  the analytical 
studies presented in this paper may be summa-
rized as follows:

a. Local shear response of the distributed mass 
system could differ from that of the lumped 
mass system.

b. The distributed mass system showed dynamic 
shear response variations along the axis normal 
to the direction of seismic motion, according to 
the mass inertial forces on the slab.

c. The maximum local shear response could be 
observed at either shear spring adjacent to the 
bays for all the analytical cases.

d. Inertial force of mass on the slab might be 
transferred to nearer bay since the local shear 
response is promotional to the distance from 
the bays.

e. The lumped mass system might underestimate 
the maximum local shear response for the dis-
tributed mass system.

f. The previously proposed Eqs. (1) and (2) 
could underestimate the maximum local shear 
response of the distributed mass system.

g. The maximum local shear response in the slab 
could be predicted appropriately by newly 
proposed Eq. (3). When the slab stiffness 
ratio kf to the adjoining bays is equal to or 
greater than 3, Eq. (4) is also available for the 
prediction.
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NOTATION

The following symbols are used in this paper:
K  = a sum of stiffness of 2 bays
k1  = stiffness ratio of bay 1 ( K1/ K )
K1  = stiffness of bay 1
K2  = stiffness of bay 2
kf  =  slab shear stiffness ratio to the supporting 

bays ( Kf / K )
Kf  =  entire slab stiffness which is a sum of Kf

’

Kf
’  =  stiffness of distributed shear springs (see 

Fig. 1)
M  = a sum of all mass
M1  =  a sum of mass deemed to be supported by 

bay 1

mi
  = distributed mass

SA  = story shear response acceleration
T0  = natural period with the rigid slab
V1  = story shear force of bay 1
V2  = story shear force of bay 2
x1  = story drift of bay 1
x2  = story drift of bay 2
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