圧効きオイルダンパを用いる木造住宅の耐震性能と耐震設計 -その4-2層木造住宅の耐震補強設計例

圧効きオイルダンパ 耐震補強 壁強さ倍率 接合部設計

1. はじめに

圧効きオイルダンパ(以下、本ダンパ)は財団法人日本建 築防災協会(以下、建防協)にて「コラボパワー制震工法」 として住宅技術評価認定を取得している。本報ではその認 定に則った耐震補強の設計例を、特徴的な事項を中心に示 す。

2. 設計の考え方

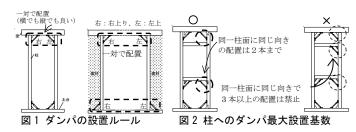
建防協での A,B2 つの設置パターンでの性能評価値を 表1に示す。この評価で用いられている壁強さ倍率の算 定方法には小振幅時での減衰評価も含まれ、表1の壁強 さ倍率は小さく評価されているため、本評価での耐震補 強では多くの本数を設置することになる。本ダンパの最 大負担荷重にて柱頭・柱脚の引抜力を算定することから、 1 本の柱に対して複数の本ダンパを設置する場合には柱 頭・柱脚接合部の金物の耐力が不足することがある。大 掛かりな接合部補強を避けるためにも、補強を行う際に は柱頭・柱脚に引抜力が過大に集中しないよう、ダンパ を分散してバランスよく配置することを心がける。

3. 設計方法

3.1 本ダンパの配置ルール

本ダンパは圧縮のみに効く片効きなので、向きの違う一 対(右上り+左上り)で配置する。本ダンパの設置スパンは 900mm 以上 3640mm 以下とするが、一対は同一スパン内 に設けなくても同一の構面内に配置されていれば良い(図 1)。また、同一柱面に同じ向きで取り付くダンパは2本以 下とする(図 2)。尚、圧効きダンパは速度に比例して耐力 を発揮するため、速度に比例しないで耐力を発揮する面材 等の耐力の合計で 0.7 以上の評点を確保するものとする。

3.2 柱頭・柱脚接合部の設計方法


圧効きダンパを設置したスパンに水平力が作用した場合 の応力状態は図3のようになる。本ダンパを設置する柱で は、柱左右に設置した本ダンパからの柱頭の引抜力をそれ ぞれ計算して足し合せ、接合部金物を選択する。しかし、 各接合部について計算を行うことは非常に煩雑な作業で あるため、設置スパンにおける柱頭・柱脚引抜力簡易算定 表(表2)を用意してある。表2を利用することで、計算 なしに簡易に引抜力を算定することができる。またこれに、 表3に示すN値計算に基づく鉛直荷重による押さえ込み荷 重²⁾を考慮したものが表4のダンパ接合部設計用引抜力算 定表である。同表はダンパのみを設置した場合の接合部設

曾田五月也*2 正会員 ○久保田雄大*¹ 百 同 宮津 裕次*3

表1 配置パターンと壁強さ倍率

構成	壁強さ倍率、 壁基準耐力	壁基準剛性
まぐさ、または窓台+圧効きダンパ+コーナー10金物 【パターンA】 「まぐさ、または窓台 圧効きダンパ	1.0kN/一対	70kN/rad/一対
圧効きダンパ(柱頭及び柱脚に取付く) 【パターンB】 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0.7kN/一対	38kN/rad/一対

*引抜き耐力 10kN 以上を有する指定の接合部金物

ダンパ最大負担荷重 P=Q/12 🖒 表2設置スパンにおける N=15kN 軸方向力成分 Q=10.6kN Q /12 (柱間スパン=910mm、 階高 2730mm の場合)

柱頭・柱脚引抜力簡易算定表

2基 -あり柱頭 10.6

10.6 -あり柱脚 パーなし柱脚

図3 柱頭・柱脚引抜力算定例

表3N値計算に基づく鉛直荷重 こよる柱の押さえ込み荷重表

にある社の行じたとの門主教					
階数	押さえ込み荷重[kN]				
阳奴	端部柱	内部柱			
最上階	2.12	3.18			
3階建ての2階及び 2階建ての1階	5.29	8.47			
3階建ての1階	8.47	13.76			

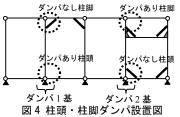


表 4 ダンパ接合部設計用引抜力算定表

ダンパ設置	仕口部の	取り付く	検討する	建物階数					
基数 ダンパ有無		柱の位置				2階建て		平屋建て	
垄奴	メンハ有無	柱の位直	THB	3階	2階	1階	2階	1階	1階
		端部柱	柱頭	8.48	5.31	2.13	8.48	5.31	8.48
	あり	当日で仕	柱脚	11.13	7.96	4.78	11.13	7.96	11.13
	859	内部柱	柱頭	7.42	2.13	(3.16)	7.42	2.13	7.42
2基		PHOPE	柱脚	10.07	4.78	(0.51)	10.07	4.78	10.07
2 2 2	なし・	端部柱	柱頭	0.53	(2.64)	(5.82)	0.53	(2.64)	0.53
		AU UD UT	柱脚	3.18	0.01	(3.17)	3.18	0.01	3.18
		内部柱	柱頭	(0.53)	(5.82)	(11.11)	(0.53)	(5.82)	(0.53)
			柱脚	2.12	(3.17)	(8.46)	2.12	(3.17)	2.12
		端部柱	柱頭	8.48	5.31	2.13	8.48	5.31	8.48
	あり		柱脚	8.48	5.31	2.13	8.48	5.31	8.48
	809	内部柱	柱頭	7.42	2.13	(3.16)	7.42	2.13	7.42
1基		PIDPE	柱脚	7.42	2.13	(3.16)	7.42	2.13	7.42
1 盃		端部柱	柱頭	0.53	(2.64)	(5.82)	0.53	(2.64)	0.53
	なし	2冊 山竹土	柱脚	0.53	(2.64)	(5.82)	0.53	(2.64)	0.53
	/4C	内部柱	柱頭	(0.53)	(5.82)	(11.11)	(0.53)	(5.82)	(0.53)
		ける山は	柱脚	(0.53)	(5.82)	(11,11)	(0.53)	(5.82)	(0.53)

計を想定しているが筋かいや耐力壁との併用した場合は それぞれの引抜力を別途に計算し、足し合わせて接合部金 物を選択する事になる。

Seismic performance and design of wooden houses using compressive oil dampers -Part4- Seismic strengthening design of a two story wooden house

KUBOTA Yuta, SODA Satsuya MIYAZU Yuji

4. 設計例

モデルプランを用いて図5のフローに合せて耐震補強 設計例を示す。

4.1 モデルプラン概要

図6にモデルプラン1階平面図を示す。建物条件は木 造2階建て、重い屋根の建物としている。外壁、内壁は 土塗壁厚 55mm とし、他の耐力要素としては3ツ割筋か いが設置されている。

4.2 補強前上部構造評点の算定

建防協の一般診断法方法 11)に則り補強前上部構造評 点を算定する。表5に示すように、このプランでは1階 の上部構造評点が不足していることが分かる。また、1 階のX方向に偏心が見られ、建物保有耐力に低減がかか っている。

4.3 必要ダンパ対数の算定

必要耐力から 4.2 項で求めた建物保有耐力を差し引き、 その値を本ダンパの壁強さ倍率で除した値が圧効き必要 ダンパ対数となる(表 6)。このとき、壁強さ倍率が小さい パターンBを基準として計算する (補強後に評点に過分 が見られる場合は、ダンパの設置対数を調整する)。

4.4 本ダンパの配置

本ダンパの設置位置は、開口部や壁内部に設置できる ことが特徴である。このプランでは1階X方向において 偏心が見られるが、ダンパを耐力の不足領域(北側)に重点 的に配置することで偏心を解消することができる。これ により偏心によって低減された分の評点を相対的に上げ ることとなる。また、開口部の上下に積極的に配置する ことで居住空間を大きく変更することなしに耐震補強を 行うこととする。図7にモデルプラン補強案1階平面図 を示す。

4.5 柱頭・柱脚接合部の設計

モデルプランでは圧効きダンパの設置は1階だけなの で、表4から建物階数が「2階建て」かつ「1階」の該当 部分を参照して圧効きダンパを設置した柱頭・柱脚の引抜 力をそれぞれ算定する。引抜力が 3kN 以下の場合は既設の 金物のままとし、3kN を超え 10kN 以下の場合は引抜耐力 10kN の金物を各接合部に設置することとした。これによ り、本ダンパを設置した柱位置での接合部低減は考えなく て良い。

4.6 補強後上部構造評点の算定

本ダンパを考慮した建物保有耐力を算定し、4.2 項と同 様に上部構造評点を算出する(表 7)。今回は 1 階 X 方向の 偏心による低減を解消することで、4.3 項で求めたダンパ 必要組数より少ないダンパ組数で目標評点を達成するこ とができた。最終ダンパ補強組数を表8に示す。

図5 耐震補強設計フロー

図6 モデルプラン1階平面図

表 5 補強前上部構造評点

階	方向	強さ P(kN)	配置などによる 低減係数E	劣化度 D	建物保有耐力 Pd=P×E×D	必要耐力 Qr(kN)	上部構造評点 Pd/Qr
2	X	21.85	1.00	1.00	21.85	19.31	1.13
	Y	20.85	1.00	1.00	20.85	19.31	1.08
1	X	36.45	0.75	1.00	27.34	43.89	0.62
1	Y	37 54	1.00	1.00	37 54	43.89	0.86

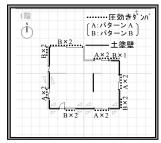


図 7 モデルプラン補強案 1 階平面図

表6必要ダンパ対数の算定

階	方向	必要耐力	建物 保有耐力	差分 必要耐力	必要 ダンパ対数
2	X	19.31	21.85	(2.54)	-
4	Y	19.31	20.85	(1.54)	-
1	X	43.89	27.34	16.55	24
1	Y	43.89	37.54	6.35	9

差分必要耐力:必要耐力-建物保有耐力 必要ダンパ対数:差分必要耐力/0.7

表 7 補強後上部構造評点

	階	方向	強さ P(kN)	配置などによる 低減係数E	劣化度 D	建物保有耐力 Pd=P×E×D	必要耐力 Qr(kN)	上部構造評点 Pd/Qr
ſ	2	X	21.85	1.00	1.00	21.85	19.31	1.13
	2	Y	20.85	1.00	1.00	20.85	19.31	1.08
ſ	1	X	43.95	1.00	1.00	43.95	43.89	1.00
ı	1	Y	44.34	1.00	1.00	44.34	43.89	1.01

表8 ダンパ最終補強対数

階	方向	ダンパル	必要対数	ダンパ最終補強対数					
		パターンA	パターンB	パターンA	パターンB				
2	X	-	-	-	-				
	Y	-	-	-	-				
1	X	-	24	4	5				
	Y	-	9	4	4				

5. まとめ

本報告では本ダンパを用いた耐震補強設計の考え方を 示し、これに合せた補強設計例を示した。圧効きダンパは 開口壁への設置も可能であり、偏心率の改善にも有効であ る。

参考文献:

- 1)日本建築防災協会:木造住宅の耐震診断と補強方法 木造住宅の耐震精 密診断と補強方法(改訂版),2006.6
- 2)建築知識 2007 06 No.621

^{*1} えびす建築研究所

^{*2} 早稲田大学創造理工学部建築学科教授

^{*3} 早稲田大学創造理工学部建築学科助手 博士(工学)

^{*1} Ebisu Building Laboratory Co.

^{*2} Prof., Dept. of Architecture, Waseda Univ., Dr. Eng. *3 Research Assoc., Dept. of Architecture, Waseda Univ., Dr. Eng.