公開ハザード情報を用いた建築物の耐震余裕度評価の検討 その1.信頼性解析に用いる地震動群の作成

公開ハザード情報	確率論的手法	信頼性解析
模擬地震動	地盤応答解析	耐震余裕度

1. はじめに

中高層までの建築物の耐震設計では、通常建築基準法 の許容応力度等計算又は保有水平耐力計算が用いられ、 超高層建築物、免震建築物でない限り、地震動を直接設 計に用いて建物の損傷や耐震余裕度が議論されることは ほとんどない。ところが近年、建築基準法で設定されて いる地震動のレベルを大きく超える地震動が観測された り、最新の知見でそのような地震動の発生確率がかなり 高い地域があることが分かってきた¹⁾。また、防災科学 技術研究所「地震ハザードステーション J-SHIS」²⁾(以 下、J-SHIS)では1kmメッシュの詳細さで、その地域の 工学的基盤における地震ハザード情報を海溝型地震、活 断層等の浅い地震など地震のカテゴリー別に公開してい る。設計者としては、将来その地域を襲う地震動に対し 建築物がどうなるかを確率論的に施主に提示できる情報 が整ってきたといえる。

本報(その1、2)では、具体的に鉄筋コンクリート造の建物を設定して J-SHIS のハザード情報を利用した耐 震余裕度評価の1手法を提示すると共に、建築基準法の 保有水平耐力計算により検定値に余裕なく設計された建 物が、ある地域の地震ハザードを見込んだ場合、どの程 度の損傷期待値となるかを検討する。

2. 耐震余裕度評価フロー

耐震余裕度評価では超過確率の定まっている地震動を 建物に入力して、その応答を信頼性解析により評価する ことが行なわれている^{例えば3)}。本検討もこの手法を用いる が、J-SHIS より与えられる情報は海溝型等の地震カテゴ リー別の工学的基盤の地震動の超過確率なので、地震カ テゴリー別の特徴を持った工学的基盤地震動群を作成し、 これを地表面まで表層増幅した地震動群を入力地震動と して用いる。

設計された建物の復元力モデルを設定し、時刻歴解析 により各階の応答変形を求める。建物応答の確率分布か ら建物のハザードカーブを算出し、これに建物性能のば らつき(フラジリティ)を考慮して耐震余裕度を評価する。 一連のフローを図1に示す。

3. 公開ハザード情報

J-SHISでは工学的基盤における地震ハザードカーブと して、カテゴリーⅠ、Ⅱの'海溝型地震'、カテゴリーⅢ の'活断層等の陸域・海域の浅い地震'(以下、内陸直下 型地震と記す)の情報が日本全国のデータとして公開さ れている。本検討では図2に示す東京都大手町(3次メ

表 1.工学的基盤波の代表値

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→						unit: cm, s	
内陸直下型地震			海溝型地震				
WaveName	Acc	Vel	Dis	WaveName	Acc	Vel	Dis
$-0.02 \times 2 \pi$	469	57.4	37.3	$-0.12 \times 2\pi$	377	45.0	23.5
$-0.03 \times 2 \pi$	407	64.7	32.0	$-0.13 \times 2\pi$	366	48.0	24.5
$-0.04 \times 2 \pi$	410	55.3	32.3	$-0.14 \times 2\pi$	377	46.6	23.9
$-0.05 \times 2 \pi$	379	55.6	30.6	$-0.15 \times 2\pi$	372	46.3	23.5
$-0.06 \times 2 \pi$	374	48.5	27.1	$-0.16 \times 2\pi$	375	45.4	22.8
$-0.07 \times 2\pi$	387	51.9	26.2	-0.17 × 2 π	377	44.4	22.9
$-0.08 \times 2 \pi$	376	47.0	25.8	$-0.18 \times 2\pi$	374	44.3	23.9
$-0.09 \times 2 \pi$	374	49.5	25.5	$-0.19 \times 2\pi$	377	45.7	22.7
$-0.10 \times 2\pi$	380	49.6	24.3	$-0.20 \times 2\pi$	386	45.0	23.9
$-0.11 \times 2\pi$	370	43.7	23.6	$-0.21 \times 2\pi$	374	43.7	21.5

ッシュコード:53394601)、50 年超過確率、平均ケースの データを用いる。なお、海溝型地震はカテゴリー I と II を合わせたもので評価する。

Seismic safety margin investigation of building using public information of hazard map.

Part.1 Making group of seismic ground motion for reliability analysis

MINAGAWA Takayuki, AZUHATA Tatsuya HANAI Tsutomu, KUBOTA Yuta

4. 工学的基盤波形群の作成

工学的基盤の模擬地震動として、振幅特性を建築基準 法施行令に応答スペクトルで示される極稀に発生する地 震動を基準とする。位相特性は位相差分スペクトルが正 規分布に従うと仮定し^{例えば4)}、標準偏差(σ)をパラメー タとして内陸直下型地震を σ =-0.02 ~0.11×2 π 、海溝型 地震を σ =-0.12 ~0.21×2 π として全 20 位相設定する。 地震動の継続時間は 163.84 秒とし、各位相毎に 10 波の 模擬地震動を作成した。加速度波形の例を図 3 に示すが、 内陸直下型地震ではパルス的な波形が、海溝型地震では なだらかな包絡形の、繰り返しの多い波形となっている。

作成波の最大加速度 Acc、最大速度 Vel、最大変位 Dis を各位相毎に平均した値を表1に示し、10 波のうちこの 値に近い波を各位相の代表波とする。また、表中の最大 速度の値を工学的基盤の最大速度(以下、PBV)とし、 地震ハザードの横軸の地震動の大きさに対応させる。こ の基準レベルでの PBV は海溝型地震で44~48cm/s、内 陸直下型地震で44~65cm/s であり、図2の地震ハザード の影響範囲を考慮して代表波の振幅倍率を0.1~1.5 倍し たものを検討に用いる工学的基盤の地震動群とする。

5. 表層地盤増幅

表層地盤の増幅は建物応答に大きく影響すること から、第2種地盤から第3種地盤にかけての様々な弾 性地盤周期 Tgを持つ地盤を想定する(表2)。工学的 基盤までの深さをパラメータに、深さを半分に分割 し、それぞれに表3の土質特性を当てる。地盤解析 は DYNES3D⁵⁾による1次元全応力解析により行った。 解析モデルは表3に示す土質特性よりH-Dモデルを 初期設定とする吉田モデル⁵⁾を用いた。

図4に位相毎の地表面の最大速度(PGV)、図5に PBVとPGVとの関係を示した。内陸直下型のパルス 的な波形のほうがPGVが大きくなる傾向で、PBVが らPGVへの増幅はかなりばらつくが平均で1.2倍ほ どとなっている。表層増幅が特徴的な傾向となった 地震動の解析結果(擬似速度応答スペクトル:pSv h= 5%,エネルギースペクトル:Ve h=10%,加速度、速度、 変位、歪みの最大値分布)を図6~9に示した。内陸 直下型及び海溝型地震共に、地盤の一部の塑性化に 伴い地表面加速度が低下し、卓越周期が長周期化を 示す様子(図6,8)、歪みが全層0.5%以下と小さく、 表層の弾性的な増幅で地表面加速度が大きくなる様 子(図7,9)が確認できる。

6. まとめ

その1では、公開ハザード情報を用いた信頼性解 析に用いる地震動群の作成を行った。地震動の位相 特性ならびに表層地盤の特性により、網羅的な地表 面の地震動波形が得られた。参考文献:その2にまとめて示す。

表 2.表層地盤モデル構成と弾性地盤周期

*2 国土技術政策総合研究所

*1 Ebisu Building Laboratory Co.

*2 National Institute for Land and Infrastructure Management

*³ President, Ebisu Building Laboratory Co., Dr. Eng.

^{*1} えびす建築研究所

^{*3} えびす建築研究所代表取締役・博士(工学)