低層鉄骨造住宅の地震応答と損傷評価に関する検討 その1. 地震動タイプによる

最大層間変位 - 累積損傷値関係の提案

地震動	位相差分スペクトル	低層鉄骨造住宅
時刻歴応答解析	最大層間変位	累積損傷値

1. はじめに

1995 年兵庫県南部地震以降、K-net(防災技術研究所) などを中心に強震動観測網が充実し、地震発生直後から観 測波形情報の入手が可能となっている。また、中央防災会 議やJ-SHIS(防災技術研究所)などでは、シナリオ地震動 の波形なども公開され、今後の構造設計における積極的な 利用が考えられる。又、建物の損傷評価においても、地震 動の特徴と建物応答の関係を把握する事が重要となる。

鉄骨造建物の損傷評価は最大変形値の他に累積変形量 も対象となる。ここでは同一構造システムの建物を対象に 地震動の特性と最大変形値から、累積変形量を推定する手 法を提案する。

2. 最大層間変位-累積損傷値関係(仮定)

本報では、図1に示すような耐力パネルを用いた低層鉄 骨造住宅を検討対象とする。対象建物は、複数の静的実験 及び実大振動実験により、耐力パネルの復元力特性、疲労 寿命特性および非構造壁の復元力特性などのデータが構 築されている¹⁾⁻⁴⁾。

また、耐力パネルの疲労寿命特性¹⁾より累積塑性変形量 を累積損傷値として1式のように表わし、地震動における 最大層間変位(δ_{max})と累積損傷値(D_L)の関係は、直 下型地震動及び海溝型地震動など地震動タイプにより図 2 のような傾向になると仮定した。

直下型地震動及び海溝型地震動など、地震動タイプの分 類方法として位相差分スペクトル⁵⁾を用いた検討が行われ

正会員	鷲津	篤夫* ¹	同	皆川	隆之 * ²
同	小山	雅人* ³	同	小山	高夫* ¹
同	花井	勉* ⁴			

ている⁶⁾。本報においても地震動の位相差分スペクトルを 正規分布と仮定し、地震動タイプをその平均値と標準偏差 をパラメータとして設定する。なお、地震動データと位相 差分(0~-2 π)との類似性については文献⁵⁾などに示され ている。表1に設定した地震動タイプ毎の模擬地震動を作 成する。模擬地震動の全データ時間を163.84 秒、位相差分 スペクトルの平均値を81.92 秒、地震動タイプにおける標 準偏差は表1の値とする。また、フーリエ振幅は図3に示 すように対象建物の応答周期では一定となるように設定 し、上記条件にあう位相をランダムに発生させ、各30波 作成した。波形例を図5に示す。

表1.模擬地震動のパラメータ			
地震動タイプ	標準偏差		
直下型	$-0.020 \times 2\pi$		
中間型1	$-0.075 \times 2\pi$		
中間型2	$-0.125 \times 2\pi$		
海溝型	$-0.200 \times 2\pi$		

注)標準偏差の値は、地震動の全データ 時間 163.84s 時の値。

4. 応答解析シミュレーション

4.1 解析モデル

図4に示す3質点系のせん断ばねモデ ルを用いて時刻歴応答解析を行う。せん断 ばねには、耐力パネル、ALC 帳壁、石膏 ボードを考慮した。各復元力特性の詳細は 文献¹⁾²⁾を参照されたい。また、各質量

及び部材量は1階の耐力パネル量に比 図4.振動モデル 例して設定される。建物諸元を表2に示す。

表 2.建物諸元

階	\overline{m}_i	R_i	\overline{n}_{pi}	W_{ALC}	w _b
3	0.7	0.8	1.0	1.525	2.034
2	1.0	0.9	1.0	1.795	2.393
1	1.0	1.0	1.0	1.795	2.393
	(2)				

ここで、 Q_{py} :耐力パネルの降伏耐力(=35.87kN)、 α_{y} :降伏 せん断力係数(=0.23)、g:重力加速度(9.80665m/s)、 $\overline{m_{i}}$ 質量 比(t)、 R_{i} :耐力パネルの剛性低下の比率、 $\overline{n_{pi}}$ 1階の耐力パ ネル量に対する比率、 w_{ALC} :ALC 帳壁の長さ(m / M)、 w_{b} : 石膏ボードの長さ(m / M)

Part 1 : The proposal of the relation between maximum relative story displacement and cumalative damage value by the type of earthquake motion

Examination about an earthquake response and damage evaluation of low-rise steel framed housing

4.2 応答解析

地震動タイプ毎の模擬地震動を入力して応答解析を行う。解析結果(1階の最大層間変位と累積損傷値)を図 6 に示す。解析では、累積損傷値が0.05以上1.0以下の範囲 に複数の結果が得られるように、降伏せん断力係数(α_y) をパラメータとしている。また、地震動タイプが海溝型に

なるに従い、設定した模擬地震動では累積損傷値が 1.0 に 至らない場合が生じる。この場合には、入力振幅の割増し により結果を得た。同図には任意の地震動 1 波における 1 階の最大層間変位と累積損傷値を 印で示している。ほぼ 同一曲線上に分布する事が確認でき、解析における耐力パ ネル量と入力振幅の大きさは、この図の関係への影響は小 さいと言える。

4.3 応答のばらつきに関して

応答解析は塑性化を伴う構成要素の非線形解析となる 為、応答にばらつきが生じる。図7に耐力パネルの累積損 傷値が、ほぼ同じ値となる2つの波の1階の応答履歴を示 した。履歴の面積はほぼ同じになるが、ドリフトにより最 大層間変位はかなり違っている。

ドリフトの影響を確認する為、最大層間変位を正負最大 層間変位の平均とした場合の近似曲線を細線で、正負最大 層間変位の2乗和平方根とした場合の近似曲線を太線で 図6に示した。各近似曲線は概ね応答の上限値および下限 値を捕らえている。

5. 地震動タイプにおける最大層間変位-累積損傷値関係

上限値の近似曲線を用いて、各地震動タイプにおける最 大層間変位-累積損傷値関係を図8に示した。同図より、地 震動タイプにおける最大層間変位-累積損傷値が2章で仮 定したものと同じ傾向である事が確認できる。

6. まとめ

本報(その1)では、位相差分スペクトルが正規分布に

*² (株)日本システム設計 *⁴ (株)日本システム設計・博士(工学)

従うとして模擬地震動を作成し、地震動タイプ毎の最大層 間変位-累積損傷値関係を得た。任意の地震動1波における 解析結果は、耐力パネル量や入力地震動の振幅には殆ど影 響なく、概ね曲線上に分布する事を確認した。又、非線形 解析における応答のばらつきの傾向についても確認した。 参考文献: 'その2'にまとめて記す。

*¹ Asahi Kasei Homes Co., *³ Asahi Kasei Homes Co., Dr.Eng
*² Nihon System Sekkei Co., *⁴ Nihon System Sekkei Co., Dr.Eng