3 階建て免震住宅の実大振動実験

その2	実験結果の全体像
-----	----------

3 階建て免震住宅	実大振動実験	すべり支承
転がり支承	入力レベル	応答値

1. はじめに

本報(その2)では、実験結果の全体像について報告する。 2. 最大入力値と最大応答値の関係

図1は主要入力波におけるEW方向の入力加速度、速度、 変位と免震層最大応答変位の関係を示す。免震層変位は入 力加速度よりも入力速度、入力変位とある程度の相関が見 られている。すべり支承では入力変位が大きくなっても免 震層変位が生じないケースがあるが、これは入力レベルの 小さい正弦波入力と苫小牧波入力の場合に見られた現象 で、これらの入力波は長周期が卓越しており加速度レベル が小さく、すべり支承の静摩擦が切れなかった為である。 これに対して転がり支承は静摩擦が小さいため、小さなレ ベルの入力加速度から免震層変位が出ている。図2は主要 入力波におけるEW方向の入力加速度、速度、変位とベー スシア係数の関係を示す。ベースシア係数も入力変位、入 力速度とある程度の相関が見られている。両装置ともベー スシア係数はほとんど 0.2 以下となっており十分な免震効 果が確認できた。すべり支承で 0.2 を超えているのは全て

正会員	中田	信治 ^{*1}	同	桐山	伸一*1
同	飯田	秀年 ^{*2}	同	山本	健史 ^{*3}
同	皆川	隆之 ^{*2}	同	福和	伸夫*3

上部構造が2階建ての場合である。また、ベースシア係数 が突出している点があるが、すべり支承(2階建て)の K-NET小千谷3軸100%入力時と、転がり支承の三の丸主 軸波110%入力のケースで、免震層変位が大きくなりスト ッパーが作動した為である。

3. 入力波形と応答波形

図3は主要入力波における入力加速度波形、免震層応答 変位波形、ベースシア係数の時刻歴波形及び免震層の荷重 変形関係を一覧に示したものである。直下型タイプのもの については両装置とも応答に大きな差異は見られないが、 長周期成分を含んだ入力波に対しては各々特徴的な傾向 を示している。すべり支承では入力レベルが小さい時、免 震層変位は生じないが、転がり支承では免震層変位が生じ ている場合がある。また入力レベルが大きい場合、転がり 支承では摩擦係数が極めて小さい事に加え、減衰こまのダ ンピング効果により、すべり支承に比べて免震層応答の履 歴ループが滑らかで、応答の収束も早まっているのが見て 取れる。

Base-Isolated Three-Story House on Full Scale Vibration Test Part 2 Result of Experiment

SHINJI Nakata et al.

*¹ 旭化成ホームズ

*² 日本システム設計

*³名古屋大学大学院環境学研究科

*¹ Asahi Kasei Homes Co.
*² Nihon System Sekkei Co.
*³ Grad.School of Environmental Studies, Nagoya Univ.