- 3 階建て免震住宅の実大振動実験
- その1 実験概要

3 階建て免震住宅	実大振動実験	長周期地震動
主軸 1 軸波	免震層の偏心	

1. はじめに

昨年の建築基準法の免震用告示の改定に伴い、戸建て免 震普及のための条件は更に整いつつある。また、一方では 長周期帯域に相当のエネルギーをもつ地震動(以下、長周 |期地震動)が観測されてきており、超高層ビル、免震建築 物や石油タンクなど長周期構造物への影響が懸念されて いる。特に戸建て免震住宅の場合は小規模であるため敷地 の制約があり、こうした長周期地震動に対する応答を把握 しておくことは重要である。本報では長周期地震動に対す る応答性状を確認することを主目的として行った実大の 振動台実験について報告する。加えて直下型を含めた入力 波の特性の違い、2階建て3階建てによる上部架構の階数 の違いによる応答特性の確認、免震層の偏心率を大きくし た場合の応答及び評価の考察も行っている。また、免震層 の応答を計算する際に、立体モデルとして各成分を含んだ 地震動を用いた時刻歴応答解析により、精度が高い結果が 得られると考えられる。しかしながら戸建て住宅でこのよ うな解析を個別に行うことは少なく、1 自由度モデルによ って NS 成分、EW 成分を用いた計算をそれぞれ行い、応 答の大きい方を当該建物の応答値としていることが多い。 主軸1軸入力と水平2軸入力又は3軸入力での応答比較か ら、1自由度モデル+主軸1軸入力波による時刻歴応答解 析を実設計に用いることが可能かの考察を行っている。 2. 加振方法

加振は大林組技術研究所 3 次元振動台にて行った。表 1 にその諸元を示す。尚、既報の実験¹⁾では、加速度により 振動台を制御したが、3 秒以降の長周期成分の不足が認め られたため、今回は変位制御として長周期領域を目標波に

合わせた。図1には長周期成 分を持った地震動入力におけ る、加速度制御の場合と変位 制御の場合の架台位置計測波 の擬似速度応答スペクトルの 比較例を示す。

Base-Isolated Three-Story House on Full Scale Vibration Test Part 1 Outline of Experiment

正会員	桐山	伸一*1	同	中田	信治 ^{*1}
同	飯田	秀年 ^{*2}	同	山本	健史 ^{*3}
同	花井	勉 *2	同	福和	伸夫*3

3. 試験体

免震周期と上部架構周期が近接した場合の挙動をみる 為、上部架構は住宅としては剛性の低い3階建て鉄骨ラー メン構造とした。柱材は角型鋼管、梁材はH型鋼を用いた。 平面寸法は4.27m×5.49m、免震層を含めた建物高さは 9.16m、アスペクト比は2.15である。2階南面および北面 には、幅2.44m、出寸法0.915mのキャンチバルコニーを設 けている。床にはALC厚100mm、外壁にはALC厚75mm、 内装壁には石膏ボード厚12mmを用いている。本実験では

3 階床までの施工を終えた 時点(2 階建ての状態)で の加振も行っているが、1 階床梁までを含めた総重 量は2 階建ての状態で約 210kN、3 階建ての状態で 約 296kN である。尚、3 階 建て時には1 階、2 階床に 積載荷重として 600N/m²相 当のおもりが含まれてい る。図2 に実験状況を、図 3 に実験概要と1 階平面図 を示す。

図2 実験状況

図3 実験概要と1 階平面図

免震層の構成は、すべり支承を用いたものと転がり支承 を用いたものの2種類について実験を行った。いずれも建 築基準法告示波に対し、免震層応答変位が30cm程度に収 まる様に、等価周期3秒、減衰定数20%を目標に構成して いる。両支承共、柱下に4基、積層ゴムはいずれの場合も 3基設置し、免震層変位が30cmの時の等価周期Tsはすべ り支承で2.76秒、転がり支承で3.13秒である。又、転が り支承には減衰材として減衰こま(戸建て用ダンパー)を 各方向2基ずつ配置した。尚、フェイルセーフとして免震 層変位が約33cmとなった場合に作動を開始するワイヤー 型ストッパーを設置している。表2に免震層の概要を示す。 図4に周期3秒、最大加速度100cm/s²の正弦波入力時の免 震層特性を、図5に免震装置の写真を示す。

支承材	復元材	減衰材	Ts	heq
すべり×4 μ=0.042	積層ゴム×3 K=115.5 kN/m		2.76 s	0.179
転がり×4 u=0.0063	積層ゴム×3 K=115.5 kN/m	減衰こま×2 容量 20 kN	3.13 s	0.203

表2 免震層の概要

Ts 及び heq は免震層変位が 30cm の時の等価周期および等価減衰定数

4. 入力地震動の概要

主要な入力地震動の一覧を表3に示す。短周期型の地震動として、神戸波、長周期型の地震動として、三の丸波、

静岡波、柔らかい第2種地盤と第3種地盤の告示波、 主要動の後に現れる定常的長周期波が被害をもたらした とされる苫小牧波を採用した。1300cm/s²以上の大きな加速 度が記録された小千谷波も加えている。尚、地震動の名称 中「_P」および「_N」とあるのは、地震動の水平2成分(NS, EW)の速度オービットが最大となる方向成分を_P(本報で は「主軸」と称する)及びその直交成分を_N で示してい る。また、水平1軸入力の他に、三の丸では水平2軸、小 千谷では3軸の加振も行った。図6に主要な入力地震動の トリパタイトを示す。三の丸は3秒付近が卓越し、免震建 物にとってはかなり厳しい地震動である。

[謝辞]

実験に際し、地震動データを提供して頂いた、愛知県設計用入力地震動研究協議会、港湾地域強震観測、気象庁、K-NET、その他関係機関 に感謝いたします。

[参考文献]

転がり支承・減衰こま

ストッパー

表3主要な入力地震動の一覧

名利	R	A max	V max	D max	供 耂
総称	成分別	(cm/s^2)	(cm/s)	(cm)	
神戸	Kobe_NS	818.0	93.4	19.0	1995 年兵庫県南部地震・旧神戸海洋気象台観測波・NS 成分
苫小牧	Toma_P	90.1	37.1	26.4	2003 年十勝沖地震・苫小牧観測波(*1)・主軸成分
	J_Oji_NS	779.2	68.0	14.6	2004 年新潟県中越地震・小千谷観測波 ^(*2) ・NS 成分
JMA 小千谷	J_Oji_EW	897.6	81.9	25.4	同・EW 成分
	J_Oji_UD	730.8	23.3	8.43	同・UD 成分
	K_Oji_NS	1147.4	98.7	17.7	2004 年新潟県中越地震・小千谷観測波 ^(*3) ・NS 成分
K-NET 小千谷	K_Oji_EW	1307.9	126.0	28.0	同・EW 成分
	K_Oji_UD	820.2	27.5	8.92	同・UD 成分
ニのま	San_P	203.7	71.8	27.3	想定新東海地震・名古屋市三の丸地区想定波(*4)・主軸成分
三の丸	San_N	167.0	55.5	19.0	同・主軸と直交する成分
静岡	Shizu_P	443.0	108.3	30.7	想定東海地震・静岡市想定波(3 次元メッシュコード 52383360)・主軸成分(*5)
生于油	ySa075	432.8	67.3	32.8	Taft 1952 EW 位相告示波・弾性地盤周期 0.75 秒
口小叔	ySa100	364.1	67.7	37.0	同・弾性地盤周期 1.00 秒
Vmax および Dmax	は、加速度を	フィルタータ	処理(ローカ	ット 0.1Hz,	ハイカット 30Hz)・数値積分の結果、 ^(*1) 港湾地域強震観測、 ^(*2) 気象庁、

(*3)K-NET、(*4)宮腰・他(2005):名古屋市三の丸地区における耐震改修用の基盤地震動の作成,日本地震工学会年次大会、(*5)中央防災会議(2004)

*¹ 旭化成ホームズ

*² 日本システム設計

*³名古屋大学大学院環境学研究科

*¹ Asahi Kasei Homes Co.

*² Nihon System Sekkei Co.

*³ Grad.School of Environmental Studies, Nagoya Univ.

 ¹⁾ 桐山・他(2002): 実大振動実験による戸建て免震住宅の装置別応答 性状比較 その1)~6), 日本建築学会大会学術講演梗概集, pp583-594