## 低層鉄骨造住宅の耐震要素に関する実験的研究

## その7 累積損傷値を規範とした設計例

耐震デバイス 低降伏点鋼 疲労寿命 耐震設計

1. はじめに

本報(その7)では前報(その6)で設定された累積損傷値 Dの算定方法に基づき、D≤1を耐震設計規範とした設 計例を示す。累積損傷値を算定するために必要な地震応 答に関する諸量は時刻歴応答解析によって求める。

2. 解析条件

2.1 振動モデル

解析モデルはせん断型多質点系であり、3階建てを想定して質点数は3とする。各質点の質量*m<sub>i</sub>*は次のように設定する。

 $m_1 = M / 2.7$   $m_2 = M / 2.7$   $m_3 = 0.7 M / 2.7$ ここで、M:総質量 =  $Q_{py} / (\alpha \cdot g)$ 、 $\alpha$ :降伏せん断力 係数、 $Q_{py}$ :耐震要素の降伏耐力(3.658tf)である。

耐力壁構造の低層住宅の実況を考慮して耐震要素数は 各層で等しく、ここでは1とする。また、柱梁フレーム の弾性変形に起因する剛性低下率 *R*, を次のように設定 する。

 $R_1 = 1$   $R_2 = 0.9$   $R_3 = 0.8$ 

耐震要素の復元力特性は図1のようにトリリニア型モ デルにスリップ部分を付加したものとする。前報の極低 サイクル疲労試験等の結果に基づき、復元力モデルを規 定する各パラメータを次のように設定する。

 $Q_{py} = 3.658$ tf  $\delta_y = 2.231$ cm  $\beta = 0.6$   $\gamma = 0.5$   $\varepsilon = 0.4$  $k_0 = 2.987$ tf/cm  $k_1 = 1.130$ tf/cm  $k_2 = 1.167$ tf/cm  $k_3 = 1.130$ tf/cm  $k_4 = 0.07$ tf/cm



| 正会員 | 小山雅人*1  | 正会員 | 三宅兒 | <b>長</b> 哉*2            |
|-----|---------|-----|-----|-------------------------|
| 正会員 | 馬場三千雄*3 | 正会員 | 花井  | <b>勉</b> * <sup>4</sup> |

また、別途行った構面せん断実験の結果に基づき、 柱・梁フレームのラーメン効果による水平剛性 k<sub>d</sub> を耐 震要素一つ当たり0.16tf/cmとする。

剛性低下は耐震要素の復元力モデルに弾性バネ $k_{fi}$ を 直列につなぐことで表現する。剛性低下率 $R_i$ は耐震要 素に許容耐力に相当する水平力が作用するときの等価 (割線)剛性 $k_e$ (1.8tf/cm)に対して設定する。このとき $k_{fi}$ は次のようになる。

$$R_i k_e = \frac{k_e k_{fi}}{k_e + k_{fi}} \quad \text{tr} \quad k_{fi} = \frac{R_i k_e}{1 - R_i} \tag{1}$$

層の復元力は剛性低下を考慮した耐震要素の復元力に柱 の負担水平力を加えた値とする。また、各層についてP-

効果による復元力の低下を考慮する。 *i* 層の復元力は 次のように表される。

$$Q_{si} = \{Q'_{pi}(\Delta_i, \dot{\Delta}_i) + k_{cl} \cdot \Delta_i\} \cdot n_{pi} - \frac{\Delta_i}{H_i} \cdot \sum_{j=i}^N m_j \cdot g$$
(2)

ここで、 $Q'_{pi}(\Delta_i, \dot{\Delta}_i)$ :剛性低下を考慮した耐震要素1枚 当たりの復元力、 $\Delta_i$ :層間変形、 $\dot{\Delta}_i$ :層間速度、 $H_i$ : 耐震要素の高さ(262cm)である。

なお、耐震要素の復元力特性と別に、耐震要素の水 平剛性をk<sub>e</sub>とした場合の1次モード減衰定数が5%となる 剛性比例型粘性減衰を設定する。

2.2 入力波

令82条の6が想定する第2種地盤の地表面地震動の加 速度応答スペクトルS<sub>a2</sub>をターゲットとした模擬波(以 下'模擬波')を採用する。模擬波は正弦波合成法によって 作成し、各正弦波成分の位相角は0~2 間の一様乱数と した。加速度の時刻歴波形の包絡線は図2のように仮定 し、20波を用意した。なお、継続時間は旧建設省告示1461



An Experimental study on earthquake-resisting elements for low-rise steel-framed housing Part 7 A seismic design using the rule of cumulative damage as the criterion of design

KOYAMA Masato et al.

号の規定に従い60秒としている。この他、表1に示す実 地震動の最大速度V<sub>max</sub>を50kineに規準化したものを用い る。S<sub>a</sub>,および実地震動の加速度応答スペクトルを図3 に示す。 表1 応答解析に用いる実地震動

| 名称                                             | 日付        | A <sub>max</sub><br>(gal) | V <sub>max</sub><br>(kine) | $T_r$ (sec) |  |  |
|------------------------------------------------|-----------|---------------------------|----------------------------|-------------|--|--|
| El centro NS                                   | 1940.5.18 | 341.7                     | 33.5                       | 53.75       |  |  |
| Hachinohe EW                                   | 1968.5.16 | 182.9                     | 35.8                       | 36.05       |  |  |
| Kobe(JMA) NS                                   | 1995.1.17 | 813.0                     | 91.8                       | 60.00       |  |  |
| Taft EW                                        | 1952.7.21 | 175.9                     | 17.7                       | 54.45       |  |  |
| $A_{max}$ :最大加速度、 $V_{max}$ :最大速度、 $T_r$ :記録時間 |           |                           |                            |             |  |  |



## 3. 解析結果

ここで設定した振動モデルの降伏せん断力は各層で 等しいので、耐震要素の塑性化は1層に集中する。1層の 最大層間変位 $\delta_{
m max}$ 、耐震要素吸収エネルギーの等価速 度V<sub>n</sub>、および前報(その6)の(2),(4)式による1層の累積損 傷値 D, D'を図4に示す。ただし、模擬波による応答値 は20波の平均値である。

 $\delta_{\max}$ はKobe(JMA) NSを除き、実地震動による応答値 が模擬波による値の1/2程度となっている。

実地震動によるV<sub>の</sub>は150kine前後、模擬波によるV<sub>の</sub> は300kine前後となっている。V<sub>p</sub>は損傷に寄与するエネ ルギー入力の等価速度と呼ばれ、V<sub>n</sub>を入力時振動の擬 似速度応答スペクトル(h=5%)に等しいとする耐震設計 法が提案されている<sup>1)</sup>。この設計法によれば、模擬波に よる $V_p$ は最大で165kineとなる。この $V_p$ に対して模擬 波によるV<sub>n</sub>は約1.8倍、エネルギー量にして約3.3倍とな り、ここで用いた模擬波は文献<sup>1)</sup>等の設計規範と比べ入 カエネルギー量が過大と言わざるを得ない。

図4には耐震要素の吸収エネルギー $E_T$ を $V_D$ =165kine として求めた D'(以下' D'<sub>165</sub>')を併記した。図4から累積 損傷値が1となるαを読み取ると、Dに対して0.23、D' に対して0.26、D'<sub>165</sub>に対して0.17となる。従来の耐震設

\*3 旭化成(株) Asahi Kasei Co.

計規範に適合する累積損傷値を D'165 とすれば、ここで 対象としている鉄骨造住宅は極めて高い耐震性能を有す るといえる。

4.まとめ

前報(その6)に示す耐震要素を有する3階建て住宅を対 象として、時刻歴応答解析により耐震性能を評価した。 その結果、従来の耐震設計規範と同等の耐震安全性を確 保するために必要な降伏せん断力係数は0.17であり、対 象住宅は高い耐震性能を有することが確認された。

また、D'は耐震要素の最大塑性変形 $\delta_{n,\max}$ と吸収エ ネルギー E<sub>r</sub>のみによって定まり、時刻歴応答解析以外 の方法によって算定することが可能である。今後はこの ような簡易な損傷評価法に基づく耐震設計手法について 検討を行う予定である。

参考文献

1) 建築研究所,鋼材倶楽部:エネルギー法に基づく耐震性 能評価法 鋼構造建築物に適用した場合,平成12年1月



\*4 (株)日本システム設計 Nihon System Sekkei Co.

<sup>\*1</sup> 旭化成ホームズ(株) Asahi Kasei Homes Co.

<sup>\*2 (</sup>株)日本システム設計・工博 Nihon System Sekkei Co., Dr. Eng.